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Abstract 

In this work, we prove some properties of a family of Fibonacci numbers and a family of Lucas numbers. 

Also,we give some identities between the family of Fibonacci numbers and family of Lucas numbers. 
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Introduction  

Fibonacci numbers and their generalizations have many important applications to various fields of 

science (e.g. see [9]). Also, we see application of Fibonacci numbers in many branches of mathematics in 

[1, 2, 3, 4, 6, 7, 8, 10-18.]. In present paper, we give some properties of a family 𝒌𝒌-Fibonacci numbers 

and relationship between the family of 𝒌𝒌-Fibonacci and 𝒌𝒌-Lucas numbers. 

The Fibonacci numbers 𝑭𝑭𝒏𝒏 are the terms of the sequence 1,1,2,3,5,8,13,21,34,55,89,144,… . Every 

Fibonacci number, except the first two, is the sum of the two previous Fibonacci numbers. The numbers 

𝑭𝑭𝒏𝒏 satisfy the second order linear recurrence relation 

𝑭𝑭𝒏𝒏 = 𝑭𝑭𝒏𝒏−𝟏𝟏 + 𝑭𝑭𝒏𝒏−𝟐𝟐 , 𝒏𝒏 = 𝟐𝟐,𝟑𝟑,𝟒𝟒, … 

with the initial values 𝑭𝑭𝟎𝟎 = 𝟎𝟎,𝑭𝑭𝟏𝟏 = 𝟏𝟏. 

Corresponding author: Engin Özkan, Department of Mathematics, Erzincan University, 24100, Erzincan, Turkey, 
e-mail: eozkan@erzincan.edu.tr. 

 

                                                        



Some Identities for a Family of Fibonacci and Lucas Numbers 296 

It is well known that the Fibonacci numbers are defined by Binet's formula 

𝑭𝑭𝒏𝒏 ≔
𝟏𝟏
√𝟓𝟓

�𝜶𝜶𝒏𝒏+𝟏𝟏 − 𝜷𝜷𝒏𝒏+𝟏𝟏�, 𝒏𝒏 = 𝟎𝟎,𝟏𝟏,𝟐𝟐, … 

where 𝜶𝜶 = �𝟏𝟏 + √𝟓𝟓�/𝟐𝟐 and 𝜷𝜷 = �𝟏𝟏 − √𝟓𝟓�/𝟐𝟐. 

Definition: Let 𝒏𝒏 and 𝒌𝒌 ≠ 𝟎𝟎 be natural numbers, then there exist unique numbers 𝒎𝒎 and 𝒓𝒓 such 

that 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓(𝟎𝟎 ≤ 𝒓𝒓 < 𝑘𝑘). The generalized 𝒌𝒌-Fibonacci numbers 𝑭𝑭𝒏𝒏
(𝒌𝒌) are defined by 

𝑭𝑭𝒏𝒏
(𝒌𝒌) =

𝟏𝟏

�√𝟓𝟓�
𝒌𝒌 �𝜶𝜶

𝒎𝒎+𝟐𝟐 − 𝜷𝜷𝒎𝒎+𝟐𝟐�𝒓𝒓�𝜶𝜶𝒎𝒎+𝟏𝟏 − 𝜷𝜷𝒎𝒎+𝟏𝟏�𝒌𝒌−𝒓𝒓, 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓 

where 𝜶𝜶 = �𝟏𝟏 + √𝟓𝟓�/𝟐𝟐 and 𝜷𝜷 = �𝟏𝟏 − √𝟓𝟓�/𝟐𝟐. 

The first few numbers of the family for 𝒌𝒌 = 𝟐𝟐,𝟑𝟑,𝟒𝟒 are as follows: 

�𝑭𝑭𝒏𝒏
(𝟐𝟐)�

𝒏𝒏=𝟎𝟎

𝟏𝟏𝟎𝟎
= {𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐,𝟒𝟒,𝟔𝟔,𝟗𝟗,𝟏𝟏𝟓𝟓,𝟐𝟐𝟓𝟓,𝟒𝟒𝟎𝟎,𝟔𝟔𝟒𝟒} 

�𝑭𝑭𝒏𝒏
(𝟑𝟑)�

𝒏𝒏=𝟎𝟎

𝟏𝟏𝟏𝟏
= {𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐,𝟒𝟒,𝟖𝟖,𝟏𝟏𝟐𝟐,𝟏𝟏𝟖𝟖,𝟐𝟐𝟐𝟐,𝟒𝟒𝟓𝟓,𝟐𝟐𝟓𝟓} 

�𝑭𝑭𝒏𝒏
(𝟒𝟒)�

𝒏𝒏=𝟎𝟎

𝟏𝟏𝟐𝟐
= {𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟏𝟏,𝟐𝟐,𝟒𝟒,𝟖𝟖,𝟏𝟏𝟔𝟔,𝟐𝟐𝟒𝟒,𝟑𝟑𝟔𝟔,𝟓𝟓𝟒𝟒,𝟖𝟖𝟏𝟏}. 

It is well known that the relation of the generalized 𝒌𝒌-Fibonacci and Fibonacci numbers is 

𝑭𝑭𝒏𝒏
(𝒌𝒌) = (𝑭𝑭𝒎𝒎)𝒌𝒌−𝒓𝒓(𝑭𝑭𝒎𝒎+𝟏𝟏)𝒓𝒓 

where 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓. Consider the case 𝒌𝒌 = 𝟏𝟏 in last equation, we get that 𝒎𝒎 = 𝒏𝒏 and 𝒓𝒓 = 𝟎𝟎 so 

𝑭𝑭𝒏𝒏
(𝟏𝟏) = 𝑭𝑭𝒏𝒏. 

The Lucas numbers 𝑳𝑳𝒏𝒏 are defined 

𝑳𝑳𝒏𝒏 = 𝑳𝑳𝒏𝒏−𝟏𝟏 + 𝑳𝑳𝒏𝒏−𝟐𝟐 , 𝒏𝒏 = 𝟐𝟐,𝟑𝟑,𝟒𝟒, … 

with initial conditions 𝑳𝑳𝟎𝟎 = 𝟐𝟐, 𝑳𝑳𝟏𝟏 = 𝟏𝟏. 

The first a few Lucas numbers are 2,1,3,4,7,11,18,29,47,76,123,199,322, … . The Binet’s formula for 

the Lucas numbers 𝑳𝑳𝒏𝒏 is 
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𝑳𝑳𝒏𝒏 = 𝜶𝜶𝒏𝒏 + 𝜷𝜷𝒏𝒏 ,   𝒏𝒏 = 𝟎𝟎,𝟏𝟏,𝟐𝟐, …  

where 𝜶𝜶 = �𝟏𝟏 + √𝟓𝟓�/𝟐𝟐 and 𝜷𝜷 = �𝟏𝟏 − √𝟓𝟓�/𝟐𝟐. 

We see that the Lucas numbers and Fibonacci numbers are related by 

𝑳𝑳𝒏𝒏 = 𝑭𝑭𝒏𝒏 + 𝑭𝑭𝒏𝒏−𝟐𝟐 =
𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
𝑭𝑭𝒏𝒏−𝟏𝟏

 . 

Definition: Let 𝒏𝒏 and 𝒌𝒌 ≠ 𝟎𝟎 be natural numbers, then there exist unique numbers 𝒎𝒎 and 𝒓𝒓 such 

that 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓(𝟎𝟎 ≤ 𝒓𝒓 < 𝑘𝑘). The generalized 𝒌𝒌-Lucas numbers 𝑳𝑳𝒏𝒏
(𝒌𝒌) are defined 

𝑳𝑳𝒏𝒏
(𝒌𝒌) = �𝜶𝜶𝒎𝒎+𝟏𝟏 + 𝜷𝜷𝒎𝒎+𝟏𝟏�𝒓𝒓(𝜶𝜶𝒎𝒎 + 𝜷𝜷𝒎𝒎)𝒌𝒌−𝒓𝒓, 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓 

where 𝜶𝜶 = �𝟏𝟏 + √𝟓𝟓�/𝟐𝟐 and 𝜷𝜷 = �𝟏𝟏 − √𝟓𝟓�/𝟐𝟐. 

It is well known that the relation of the generalized 𝒌𝒌-Lucas and Lucas numbers is 

𝑳𝑳𝒏𝒏
(𝒌𝒌) = (𝑳𝑳𝒎𝒎)𝒌𝒌−𝒓𝒓(𝑳𝑳𝒎𝒎+𝟏𝟏)𝒓𝒓 

where 𝒏𝒏 = 𝒎𝒎𝒌𝒌 + 𝒓𝒓. 

The first few numbers of the family for 𝒌𝒌 = 𝟐𝟐,𝟑𝟑,𝟒𝟒 are as follows: 

�𝑳𝑳𝒏𝒏
(𝟐𝟐)�

𝒏𝒏=𝟎𝟎

𝟗𝟗
= {𝟒𝟒,𝟐𝟐,𝟏𝟏,𝟑𝟑,𝟗𝟗,𝟏𝟏𝟐𝟐,𝟏𝟏𝟔𝟔,𝟐𝟐𝟖𝟖,𝟒𝟒𝟗𝟗,𝟐𝟐𝟐𝟐} 

�𝑳𝑳𝒏𝒏
(𝟑𝟑)�

𝒏𝒏=𝟎𝟎

𝟏𝟏𝟎𝟎
= {𝟖𝟖,𝟒𝟒,𝟐𝟐,𝟏𝟏,𝟑𝟑,𝟗𝟗,𝟐𝟐𝟐𝟐,𝟑𝟑𝟔𝟔,𝟒𝟒𝟖𝟖,𝟔𝟔𝟒𝟒,𝟏𝟏𝟏𝟏𝟐𝟐} 

 

Some Identities For Fibonacci And Lucas Numbers 

The following identities for Fibonacci and Lucas numbers are given in [5] and [9] 

 𝑭𝑭𝒏𝒏+𝟏𝟏
𝟑𝟑 − 𝑭𝑭𝒏𝒏𝟑𝟑 − 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 = 𝟑𝟑𝑭𝑭𝒏𝒏+𝟏𝟏 ⋅ 𝑭𝑭𝒏𝒏 ⋅ 𝑭𝑭𝒏𝒏−𝟏𝟏 (1) 

 � 𝑭𝑭𝒕𝒕𝑭𝑭𝟑𝟑𝒕𝒕
𝒏𝒏

𝒕𝒕=𝟏𝟏
= 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏 (2) 
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 𝑭𝑭𝒏𝒏−𝟏𝟏𝟔𝟔 + 𝑭𝑭𝒏𝒏𝟔𝟔 + 𝑭𝑭𝒏𝒏+𝟏𝟏
𝟔𝟔 = 𝟐𝟐�𝟐𝟐𝑭𝑭𝒏𝒏𝟐𝟐 + (−𝟏𝟏)𝒏𝒏�𝟑𝟑 + 𝟑𝟑𝑭𝑭𝒏𝒏−𝟏𝟏𝟐𝟐 𝑭𝑭𝒏𝒏𝟐𝟐𝑭𝑭𝒏𝒏+𝟏𝟏

𝟐𝟐  (3) 

 𝟓𝟓𝑭𝑭𝒏𝒏 = 𝑳𝑳𝒏𝒏+𝟐𝟐 − 𝑳𝑳𝒏𝒏−𝟐𝟐 (4) 

 𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏 = (𝑳𝑳𝒏𝒏+𝟏𝟏)𝟐𝟐 − (𝑳𝑳𝒏𝒏)𝟐𝟐 (5) 

 𝑭𝑭𝟐𝟐𝒏𝒏 = 𝑭𝑭𝒏𝒏+𝟏𝟏
𝟐𝟐 − 𝑭𝑭𝒏𝒏−𝟏𝟏𝟐𝟐 = 𝑭𝑭𝒏𝒏𝑳𝑳𝒏𝒏 (6) 

 𝑭𝑭𝟑𝟑𝒏𝒏 = 𝟓𝟓(𝑭𝑭𝒏𝒏)𝟑𝟑 + 𝟑𝟑(−𝟏𝟏)𝒏𝒏𝑭𝑭𝒏𝒏 (7) 

 𝑳𝑳𝒏𝒏𝟐𝟐 − 𝑭𝑭𝒏𝒏𝟐𝟐 = 𝟒𝟒𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏+𝟏𝟏 (8) 

 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟐𝟐 + 𝟒𝟒(−𝟏𝟏)𝒏𝒏 = 𝟓𝟓𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏+𝟑𝟑 (9) 

 (𝑭𝑭𝒏𝒏+𝟏𝟏)𝟑𝟑 = 𝑭𝑭𝒏𝒏𝟑𝟑 + 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 + 𝟑𝟑𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏 (10) 

 

Main Results 

Theorem 1. Let 𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, the generalized 𝟐𝟐-Fibonacci numbers satisfy 

𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) = 𝟐𝟐 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐)  . 

Proof. Bythe (1), we may write 

𝑭𝑭𝒏𝒏+𝟏𝟏
𝟑𝟑 − 𝑭𝑭𝒏𝒏𝟑𝟑 = 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 + 𝟑𝟑𝑭𝑭𝒏𝒏+𝟏𝟏.𝑭𝑭𝒏𝒏.𝑭𝑭𝒏𝒏−𝟏𝟏 

(𝑭𝑭𝒏𝒏+𝟏𝟏−𝑭𝑭𝒏𝒏)�𝑭𝑭𝒏𝒏+𝟏𝟏
𝟐𝟐 + 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏 + 𝑭𝑭𝒏𝒏𝟐𝟐� = 𝑭𝑭𝒏𝒏−𝟏𝟏(𝑭𝑭𝒏𝒏−𝟏𝟏𝟐𝟐 + 𝟑𝟑𝑭𝑭𝒏𝒏.𝑭𝑭𝒏𝒏+𝟏𝟏) 

𝑭𝑭𝒏𝒏−𝟏𝟏 �𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏

(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐)� = 𝑭𝑭𝒏𝒏−𝟏𝟏 �𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐) + 𝟑𝟑 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) � 

𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏

(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐) = 𝟑𝟑 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏

(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐)

 

𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) = 𝟐𝟐 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐)
 

Theorem 2. Let 𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, the generalized 𝟐𝟐-Fibonacci numbers satisfy 

�𝑭𝑭𝒊𝒊𝑭𝑭𝟑𝟑𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

= 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) (𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑

(𝟐𝟐) −  𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) ) 

Proof. Using (2) and 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏 = 𝑭𝑭𝒏𝒏+𝟏𝟏
𝟐𝟐 + 𝑭𝑭𝒏𝒏𝟐𝟐 , we have 

�𝑭𝑭𝒊𝒊𝑭𝑭𝟑𝟑𝒊𝒊

𝒏𝒏

𝒊𝒊=𝟏𝟏

= 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏(𝑭𝑭𝒏𝒏+𝟐𝟐𝑭𝑭𝒏𝒏+𝟏𝟏−𝑭𝑭𝒏𝒏.𝑭𝑭𝒏𝒏−𝟏𝟏) 
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= 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) �𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑

(𝟐𝟐) −  𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) � 

Theorem 3: Let 𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, the generalized 𝟐𝟐-Fibonacci numbers satisfy 

�𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) �

𝟑𝟑
+ �𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐)�
𝟑𝟑

+ �𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) �

𝟑𝟑
= 𝟐𝟐 �𝟐𝟐𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) + (−𝟏𝟏)𝒏𝒏�
𝟑𝟑

+ 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐)𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐)  . 

Proof. We get from (3) 

�𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) �

𝟑𝟑
+ �𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐)�
𝟑𝟑

+ �𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) �

𝟑𝟑
= �𝑭𝑭𝒏𝒏−𝟏𝟏𝟐𝟐 �𝟑𝟑 + �𝑭𝑭𝒏𝒏𝟐𝟐�

𝟑𝟑 + �𝑭𝑭𝒏𝒏+𝟏𝟏
𝟐𝟐 �𝟑𝟑 

= (𝑭𝑭𝒏𝒏−𝟏𝟏)𝟔𝟔 + (𝑭𝑭𝒏𝒏)𝟔𝟔 + (𝑭𝑭𝒏𝒏+𝟏𝟏)𝟔𝟔 

= 𝟐𝟐�𝟐𝟐𝑭𝑭𝒏𝒏𝟐𝟐 + (−𝟏𝟏)𝒏𝒏�𝟑𝟑 + 𝟑𝟑𝑭𝑭𝒏𝒏−𝟏𝟏𝟐𝟐 𝑭𝑭𝒏𝒏𝟐𝟐𝑭𝑭𝒏𝒏+𝟏𝟏
𝟐𝟐  

= 𝟐𝟐[𝟐𝟐𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐) + (−𝟏𝟏)𝒏𝒏]𝟑𝟑 + 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐)𝑭𝑭𝟐𝟐𝒏𝒏+𝟐𝟐

(𝟐𝟐)  . 

Theorem 4. Let 𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐,𝟑𝟑, … }. For fixed 𝒏𝒏, we have a relation among the generalized 𝟐𝟐-Lucas 

numbers as follows 

 𝑳𝑳𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) − 𝑳𝑳𝟐𝟐𝒏𝒏 

(𝟐𝟐) =  𝑳𝑳𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) + 𝑳𝑳𝟐𝟐𝒏𝒏 

(𝟐𝟐) −  𝑳𝑳𝟐𝟐𝒏𝒏−𝟑𝟑
(𝟐𝟐) − 𝑳𝑳𝟐𝟐𝒏𝒏−𝟒𝟒 

(𝟐𝟐) . 

Proof. We have 

𝑳𝑳𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) = 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟏𝟏 

𝑳𝑳𝟐𝟐𝒏𝒏
(𝟐𝟐) = (𝑳𝑳𝒏𝒏)𝟐𝟐 

𝑳𝑳𝟐𝟐𝒏𝒏−𝟑𝟑
(𝟐𝟐) = 𝑳𝑳𝒏𝒏−𝟏𝟏𝑳𝑳𝒏𝒏−𝟐𝟐 

𝑳𝑳𝟐𝟐𝒏𝒏−𝟒𝟒
(𝟐𝟐) = (𝑳𝑳𝒏𝒏−𝟐𝟐)𝟐𝟐 

then we get from (4), (5) and (6) 

 𝑳𝑳𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) + 𝑳𝑳𝟐𝟐𝒏𝒏 

(𝟐𝟐) −  𝑳𝑳𝟐𝟐𝒏𝒏−𝟑𝟑
(𝟐𝟐) − 𝑳𝑳𝟐𝟐𝒏𝒏−𝟒𝟒 

(𝟐𝟐) = �𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟏𝟏 + (𝑳𝑳𝒏𝒏)𝟐𝟐� − �𝑳𝑳𝒏𝒏−𝟏𝟏𝑳𝑳𝒏𝒏−𝟐𝟐 + (𝑳𝑳𝒏𝒏−𝟐𝟐)𝟐𝟐� 

= 𝑳𝑳𝒏𝒏(𝑳𝑳𝒏𝒏 + 𝑳𝑳𝒏𝒏+𝟏𝟏) − 𝑳𝑳𝒏𝒏−𝟐𝟐(𝑳𝑳𝒏𝒏−𝟏𝟏 + 𝑳𝑳𝒏𝒏−𝟐𝟐) 

= 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟐𝟐 − 𝑳𝑳𝒏𝒏−𝟐𝟐𝑳𝑳𝒏𝒏 

= 𝑳𝑳𝒏𝒏(𝑳𝑳𝒏𝒏+𝟐𝟐 − 𝑳𝑳𝒏𝒏−𝟐𝟐) 
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= 𝟓𝟓𝑭𝑭𝒏𝒏𝑳𝑳𝒏𝒏 

= 𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏 

= (𝑳𝑳𝒏𝒏+𝟏𝟏)𝟐𝟐 − (𝑳𝑳𝒏𝒏)𝟐𝟐 

=  𝑳𝑳𝟐𝟐𝒏𝒏+𝟐𝟐
(𝟐𝟐) − 𝑳𝑳𝟐𝟐𝒏𝒏 

(𝟐𝟐)
 

Theorem 5. Let  𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, the generalized 𝟐𝟐-Fibonacci numbers satisfy 

𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐) �𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) + 𝟑𝟑(−𝟏𝟏)𝒏𝒏� = 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏 − 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏 . 

Proof. We get from (7) 

𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐) �𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) + 𝟑𝟑(−𝟏𝟏)𝒏𝒏� = 𝟓𝟓 �𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐)�

𝟐𝟐
+ 𝟑𝟑(−𝟏𝟏)𝒏𝒏𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐)
 

= 𝟓𝟓�(𝑭𝑭𝒏𝒏)𝟐𝟐�𝟐𝟐 + 𝟑𝟑(−𝟏𝟏)𝒏𝒏(𝑭𝑭𝒏𝒏)𝟐𝟐 

= 𝟓𝟓(𝑭𝑭𝒏𝒏)𝟒𝟒 + 𝟑𝟑(−𝟏𝟏)𝒏𝒏(𝑭𝑭𝒏𝒏)𝟐𝟐 

= 𝑭𝑭𝒏𝒏(𝟓𝟓(𝑭𝑭𝒏𝒏)𝟑𝟑 + 𝟑𝟑(−𝟏𝟏)𝒏𝒏(𝑭𝑭𝒏𝒏) 

= 𝑭𝑭𝒏𝒏𝑭𝑭𝟑𝟑𝒏𝒏 

= 𝑭𝑭𝒏𝒏(𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏𝑭𝑭𝒏𝒏+𝟏𝟏 − 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏−𝟏𝟏) 

= 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏 − 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏 

= 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟏𝟏 − 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏 

Theorem 6. Let  𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, we have the relation 

𝑳𝑳𝟐𝟐𝒏𝒏 
(𝟐𝟐)  − 𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) = 𝟒𝟒(𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐) ) 

between the generalized 𝟐𝟐-Fibonacci numbers and Lucas numbers. 

Proof. Using (8), we can write 

𝟒𝟒 �𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) + 𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐) � = 𝟒𝟒[(𝑭𝑭𝒏𝒏−𝟏𝟏)𝟐𝟐 + 𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏−𝟏𝟏] 

= 𝟒𝟒(𝑭𝑭𝒏𝒏−𝟏𝟏(𝑭𝑭𝒏𝒏−𝟏𝟏 + 𝑭𝑭𝒏𝒏)) 

= 𝟒𝟒𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏+𝟏𝟏 

= 𝑳𝑳𝒏𝒏 
𝟐𝟐  − 𝑭𝑭𝒏𝒏𝟐𝟐  

= 𝑳𝑳𝟐𝟐𝒏𝒏 
(𝟐𝟐)  − 𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐) 
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Theorem 7. Let  𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, we have the relation 

𝑳𝑳𝟐𝟐𝒏𝒏+𝟏𝟏 
(𝟐𝟐)  + 𝑳𝑳𝟐𝟐𝒏𝒏

(𝟐𝟐) + 𝟒𝟒(−𝟏𝟏)𝒏𝒏 = 𝟏𝟏𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) + 𝟏𝟏𝟎𝟎𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐)  

between the generalized 𝟐𝟐-Fibonacci numbers and Lucas numbers. 

Proof. By (9), we may write 

𝑳𝑳𝟐𝟐𝒏𝒏+𝟏𝟏 
(𝟐𝟐)  + 𝑳𝑳𝟐𝟐𝒏𝒏

(𝟐𝟐) + 𝟒𝟒(−𝟏𝟏)𝒏𝒏 = 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟏𝟏 + 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟒𝟒(−𝟏𝟏)𝒏𝒏 

= 𝑳𝑳𝒏𝒏(𝑳𝑳𝒏𝒏+𝟏𝟏 + 𝑳𝑳𝒏𝒏)+𝟒𝟒(−𝟏𝟏)𝒏𝒏 

= 𝑳𝑳𝒏𝒏𝑳𝑳𝒏𝒏+𝟐𝟐+𝟒𝟒(−𝟏𝟏)𝒏𝒏  

= 𝟓𝟓𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏+𝟑𝟑 

= 𝟓𝟓𝑭𝑭𝒏𝒏−𝟏𝟏(𝟐𝟐𝑭𝑭𝒏𝒏+𝟏𝟏 + 𝑭𝑭𝒏𝒏) 

= 𝟏𝟏𝟎𝟎𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏+𝟏𝟏 + 𝟓𝟓𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏−𝟏𝟏 

= 𝟏𝟏𝟎𝟎𝑭𝑭𝒏𝒏−𝟏𝟏(𝑭𝑭𝒏𝒏−𝟏𝟏 + 𝑭𝑭𝒏𝒏) + 𝟓𝟓𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏−𝟏𝟏 

= 𝟏𝟏𝟎𝟎𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏−𝟏𝟏 + 𝟏𝟏𝟎𝟎𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏 + 𝟓𝟓𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏−𝟏𝟏 

= 𝟏𝟏𝟎𝟎𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) + 𝟏𝟏𝟓𝟓𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐)  

Theorem 8. Let  𝒏𝒏 ∈ {𝟏𝟏,𝟐𝟐, … }. For fixed 𝒏𝒏, we have a relation among the generalized 𝟐𝟐-Fibonacci 

numbers, 

𝑭𝑭𝟒𝟒𝒏𝒏+𝟓𝟓
(𝟒𝟒) = �𝑭𝑭𝟐𝟐𝒏𝒏

(𝟐𝟐)�
𝟐𝟐

+ 𝑭𝑭𝟒𝟒𝒏𝒏+𝟏𝟏
(𝟒𝟒) + 𝟐𝟐𝑭𝑭𝟒𝟒𝒏𝒏−𝟑𝟑

(𝟒𝟒) + 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑

(𝟐𝟐) + �𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐
(𝟐𝟐) �

𝟐𝟐
 . 

Proof. We get from (10), 

𝑭𝑭𝟒𝟒𝒏𝒏+𝟓𝟓
(𝟒𝟒) = (𝑭𝑭𝒏𝒏+𝟏𝟏)𝟑𝟑(𝑭𝑭𝒏𝒏+𝟐𝟐) 

= (𝑭𝑭𝒏𝒏𝟑𝟑 + 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 + 𝟑𝟑𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏)𝑭𝑭𝒏𝒏+𝟐𝟐 

= 𝑭𝑭𝒏𝒏𝟑𝟑𝑭𝑭𝒏𝒏+𝟐𝟐 + 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 𝑭𝑭𝒏𝒏+𝟐𝟐 + 𝟑𝟑𝑭𝑭𝒏𝒏−𝟏𝟏𝑭𝑭𝒏𝒏𝑭𝑭𝒏𝒏+𝟏𝟏𝑭𝑭𝒏𝒏+𝟐𝟐 

= 𝑭𝑭𝒏𝒏𝟑𝟑(𝑭𝑭𝒏𝒏 + 𝑭𝑭𝒏𝒏+𝟏𝟏) + 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 (𝟐𝟐𝑭𝑭𝒏𝒏 + 𝑭𝑭𝒏𝒏−𝟏𝟏) + 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑

(𝟐𝟐)
 

= 𝑭𝑭𝒏𝒏𝟑𝟑𝑭𝑭𝒏𝒏 + 𝑭𝑭𝒏𝒏𝟑𝟑𝑭𝑭𝒏𝒏+𝟏𝟏 + 𝟐𝟐𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 𝑭𝑭𝒏𝒏 + 𝑭𝑭𝒏𝒏−𝟏𝟏𝟑𝟑 𝑭𝑭𝒏𝒏−𝟏𝟏 + 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏
(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑

(𝟐𝟐)
 

= (𝑭𝑭𝟐𝟐𝒏𝒏
(𝟐𝟐))𝟐𝟐 + 𝑭𝑭𝟒𝟒𝒏𝒏+𝟏𝟏

(𝟒𝟒) + 𝟐𝟐𝑭𝑭𝟒𝟒𝒏𝒏−𝟑𝟑
(𝟒𝟒) + 𝟑𝟑𝑭𝑭𝟐𝟐𝒏𝒏−𝟏𝟏

(𝟐𝟐) 𝑭𝑭𝟐𝟐𝒏𝒏+𝟑𝟑
(𝟐𝟐) +(𝑭𝑭𝟐𝟐𝒏𝒏−𝟐𝟐

(𝟐𝟐) )𝟐𝟐 
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