Some Identities for a Family of Fibonacci and Lucas Numbers

Engin Özkan
Department of Mathematics, Erzincan University, 24100, Erzincan, Turkey.
Ali Aydoğdu
Department of Mathematics, BeykentUniversity, 34485, İstanbul, Turkey.
İpek Altun
Department of Mathematics, Erzincan University, 24100, Erzincan, Turkey.

Abstract

In this work, we prove some properties of a family of Fibonacci numbers and a family of Lucas numbers. Also,we give some identities between the family of Fibonacci numbers and family of Lucas numbers.

Keywords: Fibonacci Numbers, Generalized Fibonacci Numbers, Lucas Numbers.

Introduction

Fibonacci numbers and their generalizations have many important applications to various fields of science (e.g. see [9]). Also, we see application of Fibonacci numbers in many branches of mathematics in [1, 2, 3, 4, 6, 7, 8, 10-18.]. In present paper, we give some properties of a family \boldsymbol{k}-Fibonacci numbers and relationship between the family of \boldsymbol{k}-Fibonacci and \boldsymbol{k}-Lucas numbers.

The Fibonacci numbers $\boldsymbol{F}_{\boldsymbol{n}}$ are the terms of the sequence $1,1,2,3,5,8,13,21,34,55,89,144, \ldots$. Every Fibonacci number, except the first two, is the sum of the two previous Fibonacci numbers. The numbers $\boldsymbol{F}_{\boldsymbol{n}}$ satisfy the second order linear recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \quad n=2,3,4, \ldots
$$

with the initial values $\boldsymbol{F}_{\mathbf{0}}=\mathbf{0}, \boldsymbol{F}_{\mathbf{1}}=\mathbf{1}$.

[^0]It is well known that the Fibonacci numbers are defined by Binet's formula

$$
F_{n}:=\frac{1}{\sqrt{5}}\left(\alpha^{n+1}-\beta^{n+1}\right), \quad n=0,1,2, \ldots
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.

Definition: Let \boldsymbol{n} and $\boldsymbol{k} \neq \mathbf{0}$ be natural numbers, then there exist unique numbers \boldsymbol{m} and \boldsymbol{r} such that $\boldsymbol{n}=\boldsymbol{m} \boldsymbol{k}+\boldsymbol{r}(\mathbf{0} \leq \boldsymbol{r}<k)$. The generalized \boldsymbol{k}-Fibonacci numbers $\boldsymbol{F}_{\boldsymbol{n}}^{(\boldsymbol{k})}$ are defined by

$$
F_{n}^{(k)}=\frac{1}{(\sqrt{5})^{k}}\left(\alpha^{m+2}-\beta^{m+2}\right)^{r}\left(\alpha^{m+1}-\beta^{m+1}\right)^{k-r}, \quad n=m k+r
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.

The first few numbers of the family for $\boldsymbol{k}=\mathbf{2 , 3} \mathbf{4}$ are as follows:

$$
\begin{aligned}
& \left\{F_{n}^{(2)}\right\}_{n=0}^{10}=\{1,1,1,2,4,6,9,15,25,40,64\} \\
& \left\{F_{n}^{(3)}\right\}_{n=0}^{11}=\{1,1,1,1,2,4,8,12,18,27,45,75\} \\
& \left\{F_{n}^{(4)}\right\}_{n=0}^{12}=\{1,1,1,1,1,2,4,8,16,24,36,54,81\}
\end{aligned}
$$

It is well known that the relation of the generalized \boldsymbol{k}-Fibonacci and Fibonacci numbers is

$$
F_{n}^{(k)}=\left(F_{m}\right)^{k-r}\left(F_{m+1}\right)^{r}
$$

where $\boldsymbol{n}=\boldsymbol{m} \boldsymbol{k}+\boldsymbol{r}$. Consider the case $\boldsymbol{k}=\mathbf{1}$ in last equation, we get that $\boldsymbol{m}=\boldsymbol{n}$ and $\boldsymbol{r}=\mathbf{0}$ so $F_{n}^{(1)}=F_{n}$.

The Lucas numbers $\boldsymbol{L}_{\boldsymbol{n}}$ are defined

$$
L_{n}=L_{n-1}+L_{n-2}, \quad n=2,3,4, \ldots
$$

with initial conditions $\boldsymbol{L}_{\mathbf{0}}=\mathbf{2}, \boldsymbol{L}_{\mathbf{1}}=\mathbf{1}$.
The first a few Lucas numbers are 2,1,3,4,7,11,18,29,47,76,123,199,322, The Binet's formula for the Lucas numbers $\boldsymbol{L}_{\boldsymbol{n}}$ is

$$
L_{n}=\alpha^{n}+\beta^{n}, \quad n=0,1,2, \ldots
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.

We see that the Lucas numbers and Fibonacci numbers are related by

$$
L_{n}=F_{n}+F_{n-2}=\frac{F_{2 n-1}}{F_{n-1}}
$$

Definition: Let \boldsymbol{n} and $\boldsymbol{k} \neq \mathbf{0}$ be natural numbers, then there exist unique numbers \boldsymbol{m} and \boldsymbol{r} such that $\boldsymbol{n}=\boldsymbol{m} \boldsymbol{k}+\boldsymbol{r}(\mathbf{0} \leq \boldsymbol{r}<k)$. The generalized \boldsymbol{k}-Lucas numbers $\boldsymbol{L}_{\boldsymbol{n}}^{(\boldsymbol{k})}$ are defined

$$
L_{n}^{(k)}=\left(\alpha^{m+1}+\beta^{m+1}\right)^{r}\left(\alpha^{m}+\beta^{m}\right)^{k-r}, \quad n=m k+r
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.

It is well known that the relation of the generalized \boldsymbol{k}-Lucas and Lucas numbers is

$$
L_{n}^{(k)}=\left(L_{m}\right)^{k-r}\left(L_{m+1}\right)^{r}
$$

where $\boldsymbol{n}=\boldsymbol{m} \boldsymbol{k}+\boldsymbol{r}$.

The first few numbers of the family for $\boldsymbol{k}=\mathbf{2 , 3 , 4}$ are as follows:

$$
\begin{aligned}
& \left\{L_{n}^{(2)}\right\}_{n=0}^{9}=\{4,2,1,3,9,12,16,28,49,77\} \\
& \left\{L_{n}^{(3)}\right\}_{n=0}^{10}=\{8,4,2,1,3,9,27,36,48,64,112\}
\end{aligned}
$$

Some Identities For Fibonacci And Lucas Numbers

The following identities for Fibonacci and Lucas numbers are given in [5] and [9]

$$
\begin{gather*}
F_{n+1}^{3}-F_{n}^{3}-F_{n-1}^{3}=3 F_{n+1} \cdot F_{n} \cdot F_{n-1} \tag{1}\\
\sum_{t=1}^{n} F_{t} F_{3 t}=F_{n} F_{n+1} F_{2 n+1} \tag{2}
\end{gather*}
$$

$$
\begin{gather*}
F_{n-1}^{6}+F_{n}^{6}+F_{n+1}^{6}=2\left[2 F_{n}^{2}+(-1)^{n}\right]^{3}+3 F_{n-1}^{2} F_{n}^{2} F_{n+1}^{2} \tag{3}\\
5 F_{n}=L_{n+2}-L_{n-2} \tag{4}\\
5 F_{2 n}=\left(L_{n+1}\right)^{2}-\left(L_{n}\right)^{2} \tag{5}\\
F_{2 n}=F_{n+1}^{2}-F_{n-1}^{2}=F_{n} L_{n} \tag{6}\\
F_{3 n}=5\left(F_{n}\right)^{3}+3(-1)^{n} F_{n} \tag{7}\\
L_{n}^{2}-F_{n}^{2}=4 F_{n-1} F_{n+1} \tag{8}\\
L_{n} L_{n+2}+4(-1)^{n}=5 F_{n-1} F_{n+3} \tag{9}\\
\left(F_{n+1}\right)^{3}=F_{n}^{3}+F_{n-1}^{3}+3 F_{n-1} F_{n} F_{n+1} \tag{10}
\end{gather*}
$$

Main Results

Theorem 1. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, the generalized $\mathbf{2}$-Fibonacci numbers satisfy

$$
F_{2 n+2}^{(2)}+F_{2 n}^{(2)}=2 F_{2 n+1}^{(2)}+F_{2 n-2}^{(2)} .
$$

Proof. Bythe (1), we may write

$$
\begin{aligned}
F_{n+1}^{3}-F_{n}^{3} & =F_{n-1}^{3}+3 F_{n+1} \cdot F_{n} \cdot F_{n-1} \\
\left(F_{n+1}-F_{n}\right)\left(F_{n+1}^{2}+F_{n} F_{n+1}+F_{n}^{2}\right) & =F_{n-1}\left(F_{n-1}^{2}+3 F_{n} \cdot F_{n+1}\right) \\
F_{n-1}\left(F_{2 n+2}^{(2)}+F_{2 n+1}^{(2)}+F_{2 n}^{(2)}\right) & =F_{n-1}\left(F_{2 n-2}^{(2)}+3 F_{2 n+1}^{(2)}\right) \\
F_{2 n+2}^{(2)}+F_{2 n+1}^{(2)}+F_{2 n}^{(2)} & =3 F_{2 n+1}^{(2)}+F_{2 n-2}^{(2)} \\
F_{2 n+2}^{(2)}+F_{2 n}^{(2)} & =2 F_{2 n+1}^{(2)}+F_{2 n-2}^{(2)}
\end{aligned}
$$

Theorem 2. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, the generalized $\mathbf{2}$-Fibonacci numbers satisfy

$$
\sum_{i=1}^{n} F_{i} F_{3 i}=F_{2 n+1}^{(2)}\left(F_{2 n+3}^{(2)}-F_{2 n-1}^{(2)}\right)
$$

Proof. Using (2) and $\boldsymbol{F}_{\mathbf{2 n + 1}}=\boldsymbol{F}_{\boldsymbol{n + 1}}^{\mathbf{2}}+\boldsymbol{F}_{\boldsymbol{n}}^{\boldsymbol{2}}$, we have

$$
\sum_{i=1}^{n} F_{i} F_{3 i}=F_{n} F_{n+1}\left(F_{n+2} F_{n+1}-F_{n} \cdot F_{n-1}\right)
$$

$$
=F_{2 n+1}^{(2)}\left(F_{2 n+3}^{(2)}-F_{2 n-1}^{(2)}\right)
$$

Theorem 3: Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, the generalized $\mathbf{2}$-Fibonacci numbers satisfy

$$
\left(F_{2 n-2}^{(2)}\right)^{3}+\left(F_{2 n}^{(2)}\right)^{3}+\left(F_{2 n+2}^{(2)}\right)^{3}=2\left[2 F_{2 n}^{(2)}+(-1)^{n}\right]^{3}+3 F_{2 n-2}^{(2)} F_{2 n}^{(2)} F_{2 n+2}^{(2)}
$$

Proof. We get from (3)

$$
\begin{aligned}
\left(F_{2 n-2}^{(2)}\right)^{3}+\left(F_{2 n}^{(2)}\right)^{3}+\left(F_{2 n+2}^{(2)}\right)^{3} & =\left(F_{n-1}^{2}\right)^{3}+\left(F_{n}^{2}\right)^{3}+\left(F_{n+1}^{2}\right)^{3} \\
& =\left(F_{n-1}\right)^{6}+\left(F_{n}\right)^{6}+\left(F_{n+1}\right)^{6} \\
& =2\left[2 F_{n}^{2}+(-1)^{n}\right]^{3}+3 F_{n-1}^{2} F_{n}^{2} F_{n+1}^{2} \\
& =2\left[2 F_{2 n}^{(2)}+(-1)^{n}\right]^{3}+3 F_{2 n-2}^{(2)} F_{2 n}^{(2)} F_{2 n+2}^{(2)} .
\end{aligned}
$$

Theorem 4. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\}$. For fixed \boldsymbol{n}, we have a relation among the generalized $\mathbf{2}$-Lucas numbers as follows

$$
L_{2 n+2}^{(2)}-L_{2 n}^{(2)}=L_{2 n+1}^{(2)}+L_{2 n}^{(2)}-L_{2 n-3}^{(2)}-L_{2 n-4}^{(2)}
$$

Proof. We have

$$
\begin{gathered}
L_{2 n+1}^{(2)}=L_{n} L_{n+1} \\
L_{2 n}^{(2)}=\left(L_{n}\right)^{2} \\
L_{2 n-3}^{(2)}=L_{n-1} L_{n-2} \\
L_{2 n-4}^{(2)}=\left(L_{n-2}\right)^{2}
\end{gathered}
$$

then we get from (4), (5) and (6)

$$
\begin{aligned}
L_{2 n+1}^{(2)}+L_{2 n}^{(2)}-L_{2 n-3}^{(2)}-L_{2 n-4}^{(2)} & =\left(L_{n} L_{n+1}+\left(L_{n}\right)^{2}\right)-\left(L_{n-1} L_{n-2}+\left(L_{n-2}\right)^{2}\right) \\
& =L_{n}\left(L_{n}+L_{n+1}\right)-L_{n-2}\left(L_{n-1}+L_{n-2}\right) \\
& =L_{n} L_{n+2}-L_{n-2} L_{n} \\
& =L_{n}\left(L_{n+2}-L_{n-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbf{5} \boldsymbol{F}_{n} \boldsymbol{L}_{n} \\
& =\mathbf{5} \boldsymbol{F}_{2 n} \\
& =\left(\boldsymbol{L}_{n+1}\right)^{2}-\left(\boldsymbol{L}_{n}\right)^{2} \\
& =\boldsymbol{L}_{2 n+2}^{(2)}-\boldsymbol{L}_{2 n}^{(2)}
\end{aligned}
$$

Theorem 5. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, the generalized $\mathbf{2}$-Fibonacci numbers satisfy

$$
F_{2 n}^{(2)}\left(5 F_{2 n}^{(2)}+3(-1)^{n}\right)=F_{2 n+1}^{(2)} F_{2 n+1}-F_{2 n-1}^{(2)} F_{2 n-1} .
$$

Proof. We get from (7)

$$
\begin{aligned}
F_{2 n}^{(2)}\left(5 F_{2 n}^{(2)}+3(-1)^{n}\right) & =5\left(F_{2 n}^{(2)}\right)^{2}+3(-1)^{n} F_{2 n}^{(2)} \\
& =5\left(\left(F_{n}\right)^{2}\right)^{2}+3(-1)^{n}\left(F_{n}\right)^{2} \\
& =5\left(F_{n}\right)^{4}+3(-1)^{n}\left(F_{n}\right)^{2} \\
& =F_{n}\left(5\left(F_{n}\right)^{3}+3(-1)^{n}\left(F_{n}\right)\right. \\
& =F_{n} F_{3 n} \\
& =F_{n}\left(F_{2 n+1} F_{n+1}-F_{2 n-1} F_{n-1}\right) \\
& =F_{n} F_{n+1} F_{2 n+1}-F_{n} F_{n-1} F_{2 n-1} \\
& =F_{2 n+1}^{(2)} F_{2 n+1}-F_{2 n-1}^{(2)} F_{2 n-1}
\end{aligned}
$$

Theorem 6. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, we have the relation

$$
L_{2 n}^{(2)}-F_{2 n}^{(2)}=4\left(F_{2 n-2}^{(2)}+F_{2 n-1}^{(2)}\right)
$$

between the generalized 2-Fibonacci numbers and Lucas numbers.
Proof. Using (8), we can write

$$
\begin{aligned}
4\left(F_{2 n-2}^{(2)}+F_{2 n-1}^{(2)}\right) & =4\left[\left(F_{n-1}\right)^{2}+F_{n} F_{n-1}\right] \\
& =4\left(F_{n-1}\left(F_{n-1}+F_{n}\right)\right) \\
& =4 F_{n-1} F_{n+1} \\
& =L_{n}^{2}-F_{n}^{2} \\
& =L_{2 n}^{(2)}-F_{2 n}^{(2)}
\end{aligned}
$$

Theorem 7. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, we have the relation

$$
L_{2 n+1}^{(2)}+L_{2 n}^{(2)}+4(-1)^{n}=15 F_{2 n-1}^{(2)}+10 F_{2 n-2}^{(2)}
$$

between the generalized 2 -Fibonacci numbers and Lucas numbers.
Proof. By (9), we may write

$$
\begin{aligned}
L_{2 n+1}^{(2)}+L_{2 n}^{(2)}+4(-1)^{n} & =L_{n} L_{n+1}+L_{n} L_{n}+4(-1)^{n} \\
& =L_{n}\left(L_{n+1}+L_{n}\right)+4(-1)^{n} \\
& =L_{n} L_{n+2}+4(-1)^{n} \\
& =5 F_{n-1} F_{n+3} \\
& =5 F_{n-1}\left(2 F_{n+1}+F_{n}\right) \\
& =10 F_{n-1} F_{n+1}+5 F_{n} F_{n-1} \\
& =10 F_{n-1}\left(F_{n-1}+F_{n}\right)+5 F_{n} F_{n-1} \\
& =10 F_{n-1} F_{n-1}+10 F_{n-1} F_{n}+5 F_{n} F_{n-1} \\
& =10 F_{2 n-2}^{(2)}+15 F_{2 n-1}^{(2)}
\end{aligned}
$$

Theorem 8. Let $\boldsymbol{n} \in\{\mathbf{1}, \mathbf{2}, \ldots\}$. For fixed \boldsymbol{n}, we have a relation among the generalized 2-Fibonacci numbers,

$$
F_{4 n+5}^{(4)}=\left(F_{2 n}^{(2)}\right)^{2}+F_{4 n+1}^{(4)}+2 F_{4 n-3}^{(4)}+3 F_{2 n-1}^{(2)} F_{2 n+3}^{(2)}+\left(F_{2 n-2}^{(2)}\right)^{2}
$$

Proof. We get from (10),

$$
\begin{aligned}
F_{4 n+5}^{(4)} & =\left(F_{n+1}\right)^{3}\left(F_{n+2}\right) \\
& =\left(F_{n}^{3}+F_{n-1}^{3}+3 F_{n-1} F_{n} F_{n+1}\right) F_{n+2} \\
& =F_{n}^{3} F_{n+2}+F_{n-1}^{3} F_{n+2}+3 F_{n-1} F_{n} F_{n+1} F_{n+2} \\
& =F_{n}^{3}\left(F_{n}+F_{n+1}\right)+F_{n-1}^{3}\left(2 F_{n}+F_{n-1}\right)+3 F_{2 n-1}^{(2)} F_{2 n+3}^{(2)} \\
& =F_{n}^{3} F_{n}+F_{n}^{3} F_{n+1}+2 F_{n-1}^{3} F_{n}+F_{n-1}^{3} F_{n-1}+3 F_{2 n-1}^{(2)} F_{2 n+3}^{(2)} \\
& =\left(F_{2 n}^{(2)}\right)^{2}+F_{4 n+1}^{(4)}+2 F_{4 n-3}^{(4)}+3 F_{2 n-1}^{(2)} F_{2 n+3}^{(2)}+\left(F_{2 n-2}^{(2)}\right)^{2}
\end{aligned}
$$

Acknowledgment

This study was supported by Erzincan University Rectorship under "The Scientific and Research Project of Erzincan University", project no. FEN-A-240215-0123.

References

[1]. Campbell, C.M. and Campbell, P.P., The Fibonacci length of certain centro-polyhedral groups, Journal of Applied Mathematics and Computing, Vol. 19, pp. 231-240, 2005.
[2]. Choi, G.S., Hwang, S.G., Kim, I.P., Shader, B.L. ± 1 Invariant sequences and truncated Fibonacci Sequences, Linear Algebra and its Applications,Vol. 395, pp. 303-312, 2005.
[3]. Deveci, Ö., Karaduman, E. and Campell, CM., On the k-nacci sequences in finite binary polyhedral groups, Algebra Colloquium, Vol. 18, pp. 945, 2011.
[4]. Hartwig, R., Note on a Linear Difference Equation. The American Mathematical Monthly, Vol. 113 (3), pp. 250-256, 2006.
[5]. Hoggatt,V.E., Fibonacci and Lucas Numbers, Houghton Mifflin, 1969.
[6]. Ivie, J., A General Q-Matrix, Fibonacci Quarterly,Vol. 10 (3), pp. 255-261, 1972.
[7]. Karaduman, E. and Deveci, Ö., k-nacci Sequences in Finite Triangle Groups, Discrete Dynamics in Nature and Society, Vol. 2009, 10 pages, 2009.
[8]. Kiliç, E. and Tasci, D., Generalized order-k Fibonacci and Lucas numbers, Rocky Mountain J. Math.,Vol. 38, pp. 1991-2008, 2008.
[9]. T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, John Wiley \& Sons Inc., 2001.
[10]. Mikkawy, M. and Sogabe,T., A new family of k-Fibonacci numbers, Applied Mathematics and Computation, Vol. 215, pp. 4456-4461, 2010.
[11]. Öcal, A.A., Tuglu, N., Altinisik, E., On the representation of k-generalized Fibonacci and Lucas numbers, Appl. Math.Comput., Vol. 170, pp. 584-596, 2005.
[12]. Özgür, N.Y., Generalizations of Fibonacci and Lucas sequences, Note di Matematica, Vol. 21, pp. 113-125, 2002.
[13]. Özkan, E., On Truncated Fibonacci Sequences, IndianJ. Pure of and App. Mathematics, Vol. 38 (4), pp. 241-251, 2007.
[14]. Özkan, E., Altun, İ., Göçer, A.A., On Relationship Among a New Family of k-Fibonacci, k-Lucas Numbers, Fibonacci and Lucas Numbers, Chiang Mai J. Sci., Vol. 44, 2017.
[15]. Stanimirovic, P.S., Nikolov, J., Stanimirovic, I., A generalization of Fibonacci and Lucas matrices, Discrete Appl. Math.,Vol. 156, pp. 2606-2619, 2008.
[16]. Taher, R.B. and Rachidi, M., On the matrix power and exponential by the generalized Fibonacci sequences methods: the companion matrix case, Linear Algebra Appl., Vol. 370, pp. 341-353, 2003.
[17]. Tasci, D. and Kilic, E., On the order-k generalized Lucas numbers, Appl. Math. Comput., Vol. 155, pp. 637-641,
2004.
[18]. Wojtecki, P. and Grabowski, A., Lucas numbers and generalized Fibonacci numbers, Formalized Mathematics, Vol. 12 (3), pp. 329-332, 2004.

Published: Volume 2017, Issue 10 / October 25, 2017

[^0]: Corresponding author: Engin Özkan, Department of Mathematics, Erzincan University, 24100, Erzincan, Turkey, e-mail: eozkan@erzincan.edu.tr.

