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Abstract 

The Present investigation is an analytical study of a three species syn-ecological model which comprises three 
species. Here first species (N1) ammensal on the second (N2), second species ammensal on the third (N3). In 
this model first species (N1) and third species (N3) are neutral to each other. And first (N1) and second species 
(N2) are harvested at a rate proportional to their population sizes.  All possible equilibrium points are identified 
and the stability of Interior equilibrium point is discussed by using Routh-Hurwitz criteria and the solutions are 
carried out. Further the global stability of the system is discussed by constructing a suitable Lyapunov function. 
The analytical results are supported by numerical simulation using Mat Lab. 
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1. Introduction  

Ammensalism is a relationship in which a product of one organism has a negative effect on another 
organism. It is specifically a population interaction in which one organism is harmed, while the other is 
neither affected nor benefitted. Ever since research in the discipline of theoretical ecology was initiated by 
Lotka [1] and by Volterra [4], several mathematicians and ecologists contributed to the growth of this 
area of knowledge, which has been extensively reported in the treatises of Meyer [7], Cushing [2], 
Freedman [3], Kanpur [5, 6]. The ecological interactions can be broadly classified as prey-predation, 
competitions, neutralism, and mutualism and so on. Kondala Rao K and Lakshmi Narayan K [9, 15] 
studied the stability analysis of a three species syn-eco dynamical system with a limited alternative food 
for all the three species and a three species syn-ecological model with amensalism and neutralism and a 
three species syn-ecological model with ammensalism and neutralism. Lakshmi Narayan K and Papa Rao 
A V [10, 11] investigated a three species ecological model with a prey, predator and competitor to the 
predator and optimal harvesting of the prey and harvesting of the salmon fish on a three species fisheries 
model. Solution of a three species ecological model with harvesting of prey by homotopy analysis method 
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[12], Stability analysis of two species ecological model with a strong prey and weak predator and a three 
species ecological model with a prey, predator and a competitor to both the prey and predator [13, 8] were 
carried out by Lakshmi Narayan K et al. Stability analysis of three species syn-eological model with pry-
prediation and ammensalism, Stability analysis of amensal model comprising humans, plants and birds 
with harvesting [14, 16, 17, 18], discussed by Kondala Rao K and Lakshmi Narayan K. 

Ammensalism is a ecological relationship between the species where N1 and N3 are neutral to each 
other and first species N1 effect the second species N2, second species N2 effect third species N3 without 
themselves being effected in any way. The model is represented by a system of three ordinary differential 
equations. All possible equilibrium points are identified and their stability was discussed using Routh-
Hurwitz criteria. Further solutions of quasi-linearized equations and the results are simulated by 
numerical examples using MatLab. 

2. Basic Equations 

The model equations for a system of three interacting species are given by the following set of non-
linear first order simultaneous differential equations. 
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with the following notation 

iN  (t) : Population of the first, second and third species at time “ t”, i=1, 2, 3. 

ia  : Natural growth rate of first, second and third species, i=1, 2, 3. 

iiα  : Rate of decrease of first, second and third species due to internal competitions, i= 1, 2, 3. 

21α  : Rate of decrease of the second species due to attacks of first species. 

32α  : Rate of decrease of the third species due to attacks of second species. 

1k  : Harvesting rate of first species. 

2k  : Harvesting rate of second species. 

Further the variables 321 ,, NNN  are non-negative and the model parameters 3221,,3,2,1,, ααα =ia iii

and 13α are assumed to be non negative constants. 
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3. Equilibrium Points 

For the system under investigation, eight equilibrium points are identified. They are given bellow.  
The equilibrium points are identified by solving  

.3,2,1,0 == i
dt

dNi       (3.1) 

0),,(;0),,(;0),,(.,. 321332123211 === NNNfNNNfNNNfei   (3.2) 

The equilibrium points are given bellow. 

(E1) Fully Extinct State: 

0;0;0 321 === NNN       (3.3) 

(E2) First and Second Species Extinct State:  
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(E4) Second and Third Species Extinct State:  
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(E5) Second and Third Species Survived State:  
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This state is exists if  
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(E6) First and Third Species Survived State:  
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(E7) First and Second Species Survived State: 
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This state would exist only when 

0)1()1( 11212211 >−−− akak αα     (3.11) 

(E8) Interior Equilibrium State :  
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This state would exist only when 

0)1()1(,&0)1()1( 3221113211222211311211122 >−+−−>−−− αααααααα akakaakak  (3.13) 

4. Stability of the Interior Equilibrium Points 

To examine the stability of the interior equilibrium state ( 321 ,, NNN ) we consider a small 

perturbation ),,( 321 uuu such that 

.&, 333222111 uNNuNNuNN +=+=+=     (4.1) 

After linearization we get  
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TuuuU ],[ 321=       (4.4)  

The characteristic equation for the system is 

0=− IA λ      (4.5) 

The equilibrium state is stable when the roots of the equation (4.5) are negative if they are real or 
have negative real parts if they are complex. 

In the present model, we discussed the stability of E8 (That is Interior Equilibrium point) states 
Linearized equations for the existence of all three species are 
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The characteristic equation corresponding to the interior equilibrium point is

( )[ ]( )( ) 01 33322211 =++−+ NNak αλαλλ . The Eigen values of the characteristic equation are 

( ) ,1 111 ak−−=λ  ,2222 Nαλ −=  3333 Nαλ −= . Here clearly all Eigen values are negative. Hence Interior 

Equilibrium point is stable. 

The solution of perturbation equations is
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Numerical Example: 

With Harvesting: 

Let a1=0.5, a2=0.2, α21= 0.06, α22= 0.05, α33= 0.03, u10=10, u20=20, u30=11, N2=20, N3=15. 

 

Fig 4.A     Fig 4.B 

Without Harvesting:  

 

Fig 4.C     Fig 4.D 
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Figures 4.C and 4.D show that the linearized state is asymptotically stable. Figures 4.A and 4.B show 
that harvesting strengthens slightly when comparing the equilibrium point. 

5. Global Stability 

Theorem: 
Statement: The Co-existent state or Normal steady state is globally asymptotically stable. 
Proof: Let us consider the Lyapunov’s function for the Co-existing State or Normal steady state is 
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Here 0,0,0 321 ≠≠≠ NNN  

Differentiating V with respect to‘t’, we get 
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Therefore the Co-existing state or Normal steady state is Globally Asymptotically stable. 

6. Numerical Examples 

Example 1: 

Let a1=0.02, a2=0.05, a3=0.08, α11=0.04, α22=0.4, α33=0.4, α21=0.09, α32=0.09, N10=5, N20=10, N30=15, 
k1 = 0.8 and k2 = 0.6. 

Without Harvesting: 

 

Fig (6.1.A)      Fig (6.1.B) 
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With Harvesting: 

 

Fig (6.1.C)      Fig (6.1.D) 

In these figures 6.1.A & 6.1.B show that the trajectories and phase portrait in which the interacting 
coefficients of two species i.e., α21 and α32 are same (0.09) and the equilibrium point is (2.716890, 
0.237051, 0.524964).  Fig 6.1.C, 6.1.D represents graphs with harvesting proportionalities k1=0.8, k2=0.6 
with stability point (2.5672438, 0.222818, 0.527216) and harvesting strengthened the third species 
considerably. 

Example 2:  

Let a1=0.02, a2=0.05, a3=0.08, α11=0.04, α22=0.4, α33=0.4, α21=0.009, α32=0.09, N10=5, 
N20=10,N30=15, k1 = 0.8 and k2 = 0.6. 

Without Harvesting: 

 
Fig (6.2.A)     Fig (6.2.B) 

With Harvesting: 

 

Fig (6.2.C)      Fig (6.2.D) 
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Figures 6.2.A & 6.2.B represent that α21 is decreased (0.009) and α32 is kept at same value (0.09) and 
the equilibrium point is (2.716890, 0.510995, 0.488629), which shows this one has more asymptotic 
stable than previous case. Fig 6.2.C, 6.2.D represent graphs with harvesting proportionalities k1=0.8, 
k2=0.6 with the stability point (2.562438, 0.477491, 0.490983). 

Example 3:  
Let a1=0.02, a2=0.05, a3=0.08, α11=0.04, α22=0.4, α33=0.4, α21=0.09, α32=0.009, N10=15, N20=20, 

N30=25, k1 = 0.8 and k2 = 0.6. 
Without Harvesting: 

 

Fig (6.3.A)      Fig (6.3.B) 

With Harvesting: 

 

Fig (6.3.C)      Fig (6.3.D) 

Fig 6.3.A & 6.3.B show deflections when α21 is kept at same (0.09) and α32 is decreased (0.009) and 
the equilibrium point is (2.716890, 0.237051, 0.592102). Fig 6.1.C, 6.1.D represent graphs with 
harvesting proportionalities k1=0.7, k2 =0.8 and stability point is (2.562438, 0.222816, 0.92336) which 
shows that harvesting strengthened when we decreased interacting coefficient of second and third species. 

Example 4: Without Harvesting: 

Let a1=0.02, a2=0.05, a3=0.08, α11=0.04, α22=0.4, α33=0.4, α21=0.009, α32=0.009, N10=15, N20=20, 
N30=25, k1 = 0.8 and k2 = 0.6. 
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Fig (6.4.A)      Fig (6.4.B) 

With Harvesting: 

 

Fig (6.4.C)      Fig (6.4.D) 

Figures 6.4.A & 6.4.B show that the trajectories and phase portrait in which the interacting 
coefficients of two species i.e., α21 and α32 are same (0.009) both are decreasing then the equilibrium point 
is (2.716890, 0.510995, 0.588029). Figures 6.4.C and 6.4.D represents graphs with harvesting 
proportionalities k1=0.8, k2=0.6 with stability point (2.562438, 0.474491, 0.588486) and harvesting 
strengthened the third species. Finally when we decrease the interacting coefficient between first and 
second species (α21) and second and third species (α32), first and second species are weaken and third 
species are strengthens and harvesting strengthens more the third species.   

7. Conclusion 

In this present investigation, we studied a three species syn-ecological model in which the first 
species ammensol the second species and second species amensal the third species. Here first species and 
third species are neutral to each other. All possible equilibrium points were identified and stability the of 
interior equilibrium point (E8) was discussed analytically. The analytical results were supported by the 
numerical simulation. We observed that the interior equilibrium point was globally asymptotically stable. 
The results show that harvesting strengthens the global asymptotical stability of the system. From the 
interior equilibrium point we observed that harvesting stabilize the unstable equilibrium point and 
unstabilized the stable equilibrium point. And finally from the numerical simulation we observed that 
when the interacting coefficient between the first species and the second species (α31) and second species 
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and third species (α32) both were decreased, first and second species were weakened and third species 
strengthened considerably.  
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