Fuzzy Almost p-Continuous and Almost p^*-Continuous Functions

Anjana Bhattacharyya

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India.

Abstract

This paper deals with two different types of fuzzy continuous functions, viz., fuzzy almost p-continuous and fuzzy almost p^*-continuous functions. It is shown that fuzzy almost p^*-continuous function is fuzzy almost p-continuous but the converse is true under certain condition only. Again it is proved that the composition of two fuzzy almost p^*-continuous functions is also so but this is not true for fuzzy almost p-continuous function. In the last section a new type of fuzzy regularity is introduced under which fuzzy almost p-continuous function is fuzzy almost p^*-continuous.

AMS Subject Classifications: 54A40, 54C99.

Keywords: Fuzzy almost p-continuous function, fuzzy almost p^*-continuous function, fuzzy p^*-open q-nbd, p^*-closure of a fuzzy set, fuzzy p^*-open nbd, fuzzy p^*-regular space.

1. Introduction and Preliminaries

Fuzzy preopen set is introduced by S. Nanda in [6]. Using this concept as a basic tool here we have first introduced an idempotent operator and using this operator two different types of fuzzy continuous-like functions are introduced and studied. Afterwards, a new type of fuzzy regularity is introduced in which these two functions coincide.

Throughout this paper, (X, τ) or simply by X we shall mean a fuzzy topological space (fts, for short) in the sense of Chang [3]. In 1965, L.A. Zadeh introduced fuzzy set [8] A which is a function from a non-empty set X into the closed interval $I = [0,1]$, i.e., $A \in I^X$. The support [8] of a fuzzy set

Corresponding author: Anjana Bhattacharyya, Department of Mathematics, Victoria Institution (College), 78 B, A.P.C. Road, Kolkata - 700009, India. E-mail: anjanabhattacharyya@hotmail.com.
A, denoted by \(\text{supp}A \) or \(A_0 \) and is defined by \(\text{supp}A = \{ x \in X : A(x) \neq 0 \} \). The fuzzy set with the singleton support \(\{x\} \subseteq X \) and the value \(t \) \((0 < t \leq 1) \) will be denoted by \(x_t \). \(0_x \) and \(1_x \) are the constant fuzzy sets taking values 0 and 1 respectively in \(X \). The complement \([8]\) of a fuzzy set \(A \) in an fts \(X \) is denoted by \(1_x \setminus A \) and is defined by \((1_x \setminus A)(x) = 1 - A(x) \), for each \(x \in X \). For any two fuzzy sets \(A, B \) in \(X \), \(A \leq B \) means \(A(x) \leq B(x) \), for all \(x \in X \) \([8]\) while \(A \cap B \) means \(A \) is quasi-coincident (q-coincident, for short) \([7]\) with \(B \), i.e., there exists \(x \in X \) such that \(A(x) + B(x) > 1 \). The negation of these two statements will be denoted by \(A \not\leq B \) and \(A \cap B \) respectively. For a fuzzy set \(A \), \(\text{cl}A \) and \(\text{int}A \) will stand for fuzzy closure \([3]\) and fuzzy interior \([3]\) respectively.

A fuzzy set \(A \) in an fts \((X, \tau) \) is called fuzzy regular open \([1]\) (resp., fuzzy preopen \([6]\)) if \(A = \text{int}A \) (resp., \(A \leq \text{int}A \)). The complement of a fuzzy preopen set is called fuzzy preclosed \([6]\). The union (intersection) of all fuzzy preopen (resp., fuzzy preclosed) sets contained in (resp., containing) a fuzzy set \(A \) is called fuzzy preinterior \([6]\) (resp., fuzzy preclosure \([6]\)) of \(A \), denoted by \(\text{pint}A \) (resp., \(\text{pcl}A \)). A fuzzy set \(A \) in \(X \) is called a fuzzy neighbourhood (nbd, for short) \([7]\) of a fuzzy point \(x_t \) if there exists a fuzzy open set \(G \) in \(X \) such that \(x_t \in G \leq A \). If, in addition, \(A \) is fuzzy open, then \(A \) is called fuzzy open nbd of \(x_t \). A fuzzy set \(A \) is said to be a fuzzy q-nbd of a fuzzy point \(x_t \) in an fts \(X \) if there is a fuzzy open set \(U \) in \(X \) such that \(x_t qU \leq A \). If, in addition, \(A \) is fuzzy open (resp., fuzzy preopen), then \(A \) is called a fuzzy open \([7]\) (resp., fuzzy preopen \([6]\)) q-nbd of \(x_t \). The collection of all fuzzy preopen (resp., fuzzy preclosed) sets in \(X \) is denoted by \(\text{FPO}(X) \) (resp., \(\text{FPC}(X) \)).
2. Fuzzy p^*-Open and p^*-Closed Sets: Some Properties

In this section we first introduce fuzzy p^*-open and fuzzy p^*-closed sets. Some important results are established here. Afterwards it is shown that p^*-closure operator is an idempotent operator. Again it is established that the collection of all fuzzy p^*-open sets in an fts (X, τ) is strictly weaker than that of fuzzy preopen sets.

Definition 2.1. A fuzzy set A in an fts (X, τ) is called fuzzy p^*-open if $A \leq \text{int}(p\text{cl}A)$. The complement of this set is called fuzzy p^*-closed set.

The collection of fuzzy p^*-open (resp., fuzzy p^*-closed) sets in (X, τ) is denoted by $FP^O(X)$ (resp., $FP^C(X)$).

The union (resp., intersection) of all fuzzy p^*-open (resp., fuzzy p^*-closed) sets contained in (containing) a fuzzy set A is called fuzzy p^*-interior (resp., fuzzy p^*-closure) of A, denoted by $p^\text{int}A$ (resp., $p^\text{cl}A$).

Definition 2.2. A fuzzy set A in an fts (X, τ) is called fuzzy p^*-nbd of a fuzzy point x_α if there exists a fuzzy p^*-open set U in X such that $x_{\alpha} \leq U \leq A$. If, in addition, A is fuzzy p^*-open, then A is called fuzzy p^*-open nbd of x_α.

Definition 2.3. A fuzzy set A in an fts (X, τ) is called fuzzy p^*-q-nbd of a fuzzy point x_α if there exists a fuzzy p^*-open set U in X such that $x_{\alpha}qU \leq A$. If, in addition, A is fuzzy p^*-open, then A is called fuzzy p^*-open q-nbd of x_α.

Result 2.4. Union (resp., intersection) of any two fuzzy p^*-open (resp., fuzzy p^*-closed) sets is also so.

Proof. Let A, B be two fuzzy p^*-open (resp., fuzzy p^*-closed) sets in an fts X. Then
\[A \leq \text{int}(\text{pcl}A), B \leq \text{int}(\text{pcl}B) \quad (\text{resp.,} \quad \text{cl}(\text{pint}A) \leq A, \text{cl}(\text{pint}B) \leq B). \quad \text{Now} \quad \text{int}(\text{pcl}(A \vee B)) = \text{int}(\text{pcl}A \vee \text{pcl}B) \geq \text{int}(\text{pcl}A) \vee \text{int}(\text{pcl}B) \geq A \vee B \quad (\text{resp.,} \quad \text{cl}(\text{pint}(A \wedge B)) = \text{cl}(\text{pint}A \wedge \text{pint}B) \leq \text{cl}(\text{pint}A) \wedge \text{cl}(\text{pint}B) \leq A \wedge B). \]

Remark 2.5. Intersection (resp., union) of two fuzzy \(p^* \)-open (resp., fuzzy \(p^* \)-closed) sets may not be so as it seen from the following example.

Example 2.6. Let \(X = \{a, b\} \), \(\tau = \{0_X, 1_X, A, B\} \) where \(A(a) = 0.5, A(b) = 0.4; B(a) = 0.5, B(b) = 0.55 \). Then \((X, \tau) \) is an fts. Now \(FPO(X, \tau) = \{0_X, 1_X, U, V, W\} \) where \(1_X \setminus B < U \leq B, V \geq 1_X \setminus A, W \leq A \) and \(FPC(X) = \{0_X, 1_X, 1_X \setminus U, 1_X \setminus V, 1_X \setminus W\} \) where \(1_X \setminus B \leq 1_X \setminus U < B, 1_X \setminus V < A, 1_X \setminus W \geq 1_X \setminus A \). Consider two fuzzy sets \(C, D \) in \(X \) defined by \(C(a) = 0.4, C(b) = 0.55, D(a) = 0.6, D(b) = 0.5 \). Now \(\text{int}(\text{pcl}C) = \text{int}(1_X \setminus A) = B \geq C, \text{int}(\text{pcl}D) = \text{int}(1_X) = 1_X \setminus D \Rightarrow C, D \) are fuzzy \(p^* \)-open sets in \((X, \tau) \). Let \(E = C \wedge D \). Then \(E(a) = 0.4, E(b) = 0.5 \).

Now \(\text{int}(\text{pcl}E) = \text{int}(E) = 0_X \not\geq E \Rightarrow E \) is not fuzzy \(p^* \)-open in \(X \).

Here also \(1_X \setminus C, 1_X \setminus D \) are fuzzy \(p^* \)-closed sets in \((X, \tau) \). Now \(F = (1_X \setminus C) \vee (1_X \setminus D) \) is defined by \(F(a) = 0.6, F(b) = 0.5 \) and \(\text{cl}(\text{pint}F) = \text{cl}U \) where \(U(a) = U(b) = 0.5 \). Then \(\text{cl}U = 1_X \setminus A \not\leq F \Rightarrow F \) is not fuzzy \(p^* \)-closed in \((X, \tau) \).

Result 2.7. \(x_a \in p^*\text{cl}A \) iff every fuzzy \(p^* \)-open \(q \)-nbd \(U \) of \(x_a, UqA \).

Proof. Let \(x_a \in p^*\text{cl}A \) for any fuzzy set \(A \) in an fts \((X, \tau) \). Let \(U \in FP^*O(X) \) with \(x_a \cup U \). Then \(U(x) + \alpha > 1 \Rightarrow x_a \not\leq 1_X \setminus U \in FP^*C(X) \). By Definition 2.1, \(A \not\leq 1_X \setminus U \Rightarrow \) there exists \(y \in X \) such that \(A(y) > 1 - U(y) \Rightarrow A(y) + U(y) > 1 \Rightarrow UqA \).

Conversely, let the given condition hold. Let \(U \in FP^*C(X) \) with \(A \leq U \) \(\ldots \) (1). We have to show that \(x_a \in U \), i.e., \(U(x) \geq \alpha \). If possible, let \(U(x) < \alpha \). Then \(1 - U(x) > 1 - \alpha \Rightarrow x_ac(1_X \setminus U) \) where
1. \(U \in FP^O(X) \). By hypothesis, \((1_x \setminus U)qA \Rightarrow \) there exists \(y \in X \) such that \(1 - U(y) + A(y) > 1 \Rightarrow A(y) > U(y) \), contradicts (1).

Result 2.8. \(p^*\text{cl}(p^*\text{cl}A) = p^*\text{cl}A \) for any fuzzy set \(A \) in an fts \((X, \tau) \).

Proof. Let \(A \in I^X \). Then \(A \leq p^*\text{cl}A \Rightarrow p^*\text{cl}A \leq p^*\text{cl}(p^*\text{cl}A) \) ... (1).

Conversely, let \(x_a \in p^*\text{cl}(p^*\text{cl}A) \). If possible, let \(x_a \not\in p^*\text{cl}A \). Then there exists \(U \in FP^O(X) \), \(x_aqU, UqA \) ... (2). But as \(x_a \in p^*\text{cl}(p^*\text{cl}A) \), \(Uq(p^*\text{cl}A) \Rightarrow \) there exists \(y \in X \) such that \(U(y) + (p^*\text{cl}A)(y) > 1 \Rightarrow U(y) + t > 1 \) where \(t = (p^*\text{cl}A)(y) \). Then \(y \in p^*\text{cl}A \) and \(y, qU \) where \(U \in FP^O(X) \). Then by definition, \(UqA \), contradicts (2). So \(p^*\text{cl}(p^*\text{cl}A) \leq p^*\text{cl}A \) ... (3). Combining (1) and (3), we get the result.

Note 2.9. It is clear from above discussion that fuzzy \(p^* \)-open set is fuzzy preopen as \(p\text{cl}A \leq clA \) for any fuzzy set \(A \) in an fts. But not conversely, as it seen from the following example.

Example 2.10. Consider Example 2.6. Here \(E \) is not fuzzy \(p^* \)-open. But \(\text{int}(clE) = \text{int}(1_x \setminus A) = B > E \) and so \(E \) is fuzzy preopen.

Remark 2.11. It is clear from definition that every fuzzy open set is fuzzy \(p^* \)-open. But the converse may not be true follows from Example 2.6. Here \(C \) is fuzzy \(p^* \)-open, but \(C \) is not fuzzy open. So we have the following relation.

\(\text{fuzzy open} \Rightarrow \text{fuzzy } p^* \text{-open} \Rightarrow \text{fuzzy preopen} \)

3. Fuzzy Almost \(p \)-Continuous Function: Some Characterizations

In this section we first introduce a new type of fuzzy continuous-like function which implies fuzzy almost continuity but the converse need not be true.

Definition 3.1. A function \(f : X \rightarrow Y \) is said to be fuzzy almost \(p \)-continuous if for each fuzzy
point x_α in X and every fuzzy nbd V of $f(x_\alpha)$ in Y, $pcl(f^{-1}(V))$ is a fuzzy nbd of x_α in X.

Theorem 3.2. For a function $f : X \rightarrow Y$, the following statements are equivalent:

(a) f is fuzzy almost p-continuous,

(b) $f^{-1}(B) \leq int(pcl(f^{-1}(B)))$, for all fuzzy open set B of Y,

(c) $f(clA) \leq cl(f(A))$, for all $A \in FPO(X)$.

Proof (a) \Rightarrow (b). Let B be any fuzzy open set in Y and $x_\alpha \in f^{-1}(B)$. Then $f(x_\alpha) \leq B \Rightarrow B$ is a fuzzy nbd of $f(x_\alpha)$. By (a), $pcl(f^{-1}(B))$ is a fuzzy nbd of x_α in $X \Rightarrow x_\alpha \leq int(pcl(f^{-1}(B)))$.

Hence $f^{-1}(B) \leq int(pcl(f^{-1}(B)))$.

(b) \Rightarrow (a). Let x_α be a fuzzy point in X and B be a fuzzy nbd of $f(x_\alpha)$ in Y. Then $x_\alpha \leq f^{-1}(B) \leq int(pcl(f^{-1}(B)))$ (by (b)) $\leq pcl(f^{-1}(B))$ $\Rightarrow pcl(f^{-1}(B))$ is a fuzzy nbd of x_α in X.

(b) \Rightarrow (c). Let $A \in FPO(X)$. Then $1_Y \setminus cl(f(A))$ is a fuzzy open set in Y. By (b),

$$f^{-1}(1_Y \setminus cl(f(A))) \leq int(pcl(f^{-1}(1_Y \setminus cl(f(A))))) = int(pcl(1_x \setminus f^{-1}(cl(f(A))))).$$

$$int(pcl(1_x \setminus f^{-1}(f(A)))) \leq int(pcl(1_x \setminus A)) = 1_X \setminus cl(pintA) = 1_X \setminus clA.$$ Then

$$1_X \setminus f^{-1}(cl(f(A))) \leq 1_X \setminus clA \Rightarrow clA \leq f^{-1}(cl(f(A))) \Rightarrow f(clA) \leq cl(f(A)).$$

(c) \Rightarrow (b). Let B be any fuzzy open set in Y. Then $pint(f^{-1}(1_Y \setminus B)) \in FPO(X)$. By (c),

$$f(cl(pint(f^{-1}(1_Y \setminus B)))) \leq cl(f(pint(f^{-1}(1_Y \setminus B)))) \leq cl(f(f^{-1}(1_Y \setminus B))) \leq cl(1_Y \setminus B) =$$

$$1_Y \setminus B \Rightarrow f^{-1}(B) = 1_Y \setminus f^{-1}(1_Y \setminus B) \leq 1_X \setminus cl(pint(f^{-1}(1_Y \setminus B))) = 1_X \setminus cl(pint(1_x \setminus f^{-1}(B))) = int(pcl(f^{-1}(B))).$$

Note 3.3. It is clear from Theorem 3.2 that the inverse image under fuzzy almost p-continuous function of any fuzzy open set is fuzzy p^*-open and hence fuzzy preopen.
Theorem 3.4. For a function \(f : X \rightarrow Y \), the following statements are equivalent:

(a) \(f \) is fuzzy almost \(p \)-continuous,

(b) \(f^{-1}(B) \leq \text{int}(\text{pcl}(f^{-1}(B))) \), for all fuzzy open set \(B \) of \(Y \),

(c) for each fuzzy point \(x_\alpha \) in \(X \) and each fuzzy open nbd \(V \) of \(f(x_\alpha) \), there exists \(U \in \text{FP'}O(X) \) containing \(x_\alpha \) such that \(f(U) \leq V \),

(d) \(f^{-1}(F) \in \text{FP'}C(X) \), for all fuzzy closed sets \(F \) in \(Y \),

(e) for each fuzzy point \(x_\alpha \) in \(X \), the inverse image under \(f \) of every fuzzy nbd of \(f(x_\alpha) \) is a fuzzy \(p^* \)-nbd of \(x_\alpha \) in \(X \),

(f) \(f(p^*\text{cl}A) \leq \text{cl}(f(A)) \), for all \(A \in I^X \),

(g) \(p^*\text{cl}(f^{-1}(B)) \leq f^{-1}(\text{cl}B) \), for all \(B \in I^Y \),

(h) \(f^{-1}(\text{int}B) \leq p^*\text{int}(f^{-1}(B)) \), for all \(B \in I^Y \),

(i) for every basic open fuzzy set \(V \) in \(Y \), \(f^{-1}(V) \in \text{FP'}O(X) \).

Proof (a) \(\iff \) (b). Follows from Theorem 3.2 (a) \(\iff \) (b).

(b) \(\Rightarrow \) (c). Let \(x_\alpha \) be a fuzzy point in \(X \) and \(V \) be a fuzzy open nbd of \(f(x_\alpha) \). By (b),

\[
f^{-1}(V) \leq \text{int}(\text{pcl}(f^{-1}(V))) \quad \text{(1)}.
\]

Now \(f(x_\alpha) \leq V \Rightarrow x_\alpha \in f^{-1}(V) \) (\(= U \), say). Then \(x_\alpha \in U \) and by (1), \(U(= f^{-1}(V)) \in \text{FP'}O(X) \) and \(f(U) = f(f^{-1}(V)) \leq V \).

(c) \(\Rightarrow \) (b). Let \(V \) be a fuzzy open set in \(Y \) and let \(x_\alpha \leq f^{-1}(V) \). Then \(f(x_\alpha) \leq V \Rightarrow V \) is a fuzzy open nbd of \(f(x_\alpha) \). By (c), there exists \(U \in \text{FP'}O(X) \) containing \(x_\alpha \) such that \(f(U) \leq V \).

Then \(x_\alpha \leq U \leq f^{-1}(V) \). Now \(U \leq \text{int}(\text{pcl}U) \). Then \(U \leq \text{int}(\text{pcl}U) \leq \text{int}(\text{pcl}(f^{-1}(V))) \Rightarrow x_\alpha \leq U \leq \text{int}(\text{pcl}(f^{-1}(V))) \Rightarrow f^{-1}(V) \leq \text{int}(\text{pcl}(f^{-1}(V))) \).

(b) \(\iff \) (d). Obvious.
Fuzzy Almost p-Continuous and Almost p^*-Continuous Functions

(b) \Rightarrow (e). Let W be a fuzzy nbd of $f(x_\alpha)$. Then there exists a fuzzy open set V in Y such that $f(x_\alpha) \leq V \leq W \Rightarrow V$ is a fuzzy open nbd of $f(x_\alpha)$. Then by (b), $f^{-1}(V) \in FP^O(X)$ and $x_\alpha \leq f^{-1}(V) \leq f^{-1}(W) \Rightarrow f^{-1}(W)$ is a fuzzy p^*-nbd of x_α.

(e) \Rightarrow (b). Let V be a fuzzy open set in Y and $x_\alpha \leq f^{-1}(V)$. Then $f(x_\alpha) \leq V \Rightarrow V$ is a fuzzy open nbd of $f(x_\alpha)$. By (e), $f^{-1}(V)$ is a fuzzy p^*-nbd of x_α. Then there exists $U \in FP^O(X)$ containing x_α such that $U \leq f^{-1}(V) \Rightarrow x_\alpha \leq U \leq \text{int}(pclU) \leq \text{int}(pcl(f^{-1}(V))) \Rightarrow f^{-1}(V) \leq \text{int}(pcl(f^{-1}(V)))$.

(d) \Rightarrow (f). Let $A \in I^X$. Then $\text{cl}(f(A))$ is a fuzzy closed set in Y. By (d), $f^{-1}(cl(f(A))) \in FP^C(X)$ containing A. Therefore, $p^*clA \leq p^*\text{cl}(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A))) \Rightarrow f(p^*clA) \leq cl(f(A))$.

(f) \Rightarrow (d). Let B be a fuzzy closed set in Y. Then $f^{-1}(B) \in I^X$. By (f), $f(p^*\text{cl}(f^{-1}(B))) \leq \text{cl}(f(f^{-1}(B))) \leq clB = B \Rightarrow p^*\text{cl}(f^{-1}(B)) \leq f^{-1}(B) \Rightarrow f^{-1}(B) \in FP^C(X)$.

(f) \Rightarrow (g). Let $B \in I^Y$. Then $f^{-1}(B) \in I^X$. By (f), $f(p^*\text{cl}(f^{-1}(B))) \leq \text{cl}(f(f^{-1}(B))) \leq clB \Rightarrow p^*\text{cl}(f^{-1}(B)) \leq f^{-1}(clB)$.

(g) \Rightarrow (f). Let $A \in I^X$. Let $B = f(A)$. Then $B \in I^Y$. By (g), $p^*\text{cl}A = p^*\text{cl}(f^{-1}(B)) \leq f^{-1}(clB) = f^{-1}(cl(f(A))) \Rightarrow f(p^*\text{cl}A) \leq cl(f(A))$.

(b) \Rightarrow (h). Let $B \in I^Y$. Then $\text{int}B$ is a fuzzy open set in Y. By (b), $f^{-1}(\text{int}B) \leq \text{int}(pcl(f^{-1}(\text{int}B))) \Rightarrow f^{-1}(\text{int}B) \in FP^O(X) \Rightarrow f^{-1}(\text{int}B) = p^*\text{int}(f^{-1}(\text{int}B)) \leq p^*\text{int}(f^{-1}(B))$.

(h) \Rightarrow (b). Let A be any fuzzy open set in Y. Then $f^{-1}(A) = f^{-1}(\text{int}A) \leq p^*\text{int}(f^{-1}(A))$ (by (h)) $\Rightarrow f^{-1}(A) \in FP^O(X)$.

(b) \(\Rightarrow\) (i). Obvious.

(i) \(\Rightarrow\) (b). Let \(W\) be any fuzzy open set in \(Y\). Then there exists a collection \(\{W_{\alpha}: \alpha \in \Lambda\}\) of fuzzy basic open sets in \(Y\) such that \(W = \bigvee_{\alpha \in \Lambda} W_{\alpha}\). Now \(f^{-1}(W) = f^{-1}(\bigvee_{\alpha \in \Lambda} W_{\alpha}) = \bigvee_{\alpha \in \Lambda} f^{-1}(W_{\alpha}) \in FP^*O(X)\) (by (i) and by Result 2.4). Hence (b) follows.

Theorem 3.5. A function \(f: X \to Y\) is fuzzy almost \(p\)-continuous iff for each fuzzy point \(x_{\alpha}\) in \(X\) and each fuzzy open \(q\)-nbd \(V\) of \(f(x_{\alpha})\) in \(Y\), there exists a fuzzy \(p^*\)-open set \(W\) in \(X\) with \(x_{\alpha}qW\) such that \(f(W) \leq V\).

Proof. Let \(f\) be fuzzy almost \(p\)-continuous function and \(x_{\alpha}\) be a fuzzy point in \(X\) and \(V\) be a fuzzy open set in \(Y\) with \(f(x_{\alpha})qV\). Let \(f(x) = y\). Then \(V(y) + \alpha > 1 \Rightarrow V(y) > 1 - \alpha \Rightarrow V(y) > \beta > 1 - \alpha\), for some real number \(\beta\). Then \(V\) is a fuzzy open nbd of \(y_{\beta}\). By Theorem 3.4 (a) \(\Rightarrow\) (c), there exists \(W \in FP^*O(X)\) containing \(x_{\beta}\), i.e., \(W(x) \geq \beta\) such that \(f(W) \leq V\). Then \(W(x) \geq \beta > 1 - \alpha \Rightarrow x_{\alpha}qW\) and \(f(W) \leq V\).

Conversely, let the given condition hold and let \(V\) be a fuzzy open set in \(Y\). Put \(W = f^{-1}(V)\). If \(W = 0_X\), then we are done. Suppose \(W \neq 0_X\). Then for any \(x \in W_0\), let \(y = f(x)\). Then \(W(x) = [f^{-1}(V)](x) = V(f(x)) = V(y)\). Let us choose \(m \in \mathcal{N}\) where \(\mathcal{N}\) is the set of all natural numbers such that \(1/m \leq W(x)\). Put \(\alpha_n = 1 + 1/n - W(x)\), for all \(n \in \mathcal{N}\). Then for \(n \in \mathcal{N}\) and \(n \geq m\), \(1/n \leq 1/m \Rightarrow 1 + 1/n \leq 1 + 1/m \Rightarrow \alpha_n = 1 + 1/n - W(x) \leq 1 + 1/m - W(x) \leq 1\). Again \(\alpha_n > 0\), for all \(n \in \mathcal{N}\) \(\Rightarrow 0 < \alpha_n \leq 1\) so that \(V(y) + \alpha_n > 1 \Rightarrow y_{\alpha_n}qV \Rightarrow V\) is a fuzzy open \(q\)-nbd of \(y_{\alpha_n}\). By the given condition, there exists \(U_{\alpha_n}^x \in FP^*O(X)\) such that \(x_{\alpha_n}qU_{\alpha_n}^x\) and \(f(U_{\alpha_n}^x) \leq V\), for all \(n \geq m\). Let \(U^x = \bigvee\{U_{\alpha_n}^x: n \in \mathcal{N}, n \geq m\}\). Then \(U^x \in FP^*O(X)\) (by Result 2.4) and \(f(U^x) \leq V\). Again
n \geq m \implies U^x_n(x) + \alpha_n > 1 \implies U^x_n(x) + 1 + 1/n - W(x) > 1 \implies U^x_n(x) > W(x) - 1/n \implies U^x_n(x) \geq W(x), \text{ for each } x \in W_0. \text{ Then } W \leq U^x_n, \text{ for all } n \geq m \text{ and for all } x \in W_0 \implies W \leq U^x_n, \text{ for all } x \in W_0 \implies W \leq \bigvee_{x \in W_0} U^x_n = U \text{ (say) } \cdots (1) \text{ and } f(U^x) \leq V, \text{ for all } x \in W_0 \implies f(U) \leq V = U \leq f^{-1}(f(U)) \leq f^{-1}(V) = W \cdots (2). \text{ By (1) and (2), } U = W = f^{-1}(V) \implies f^{-1}(V) \in FP'O(X). \text{ Hence by Theorem 3.2, } f \text{ is fuzzy almost } p\text{-continuous.}

Remark 3.6. If \(f : X \to Y \) is fuzzy almost \(p \)-continuous, then by Note 3.3, inverse image of every fuzzy regular open set is fuzzy \(p^* \)-open. But the converse may not be true, as it seen from the following example.

Example 3.7. Let \(X = \{a, b\}, \ \tau = \{0_X, 1_X, A\}, \ \tau_1 = \{0_X, 1_X, B\} \) where \(A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.6 \). Then \((X, \tau) \) and \((X, \tau_1) \) are fts’s. Now \(FPO(X, \tau) = \{0_X, 1_X, U, V\} \) where \(U \leq A, \ V \leq 1_X \setminus A \) and \(FPC(X, \tau) = \{0_X, 1_X, 1_X \setminus U, 1_X \setminus V\} \) where \(1_X \setminus U \geq 1_X \setminus A, \ 1_X \setminus V \geq A \). Consider the identity function \(i : (X, \tau) \to (X, \tau_1) \). The fuzzy regular open sets in \((X, \tau_1) \) are only \(0_X \) and \(1_X \). So obviously inverse image of every fuzzy regular open set in \((X, \tau_1) \) is fuzzy \(p^* \)-open in \((X, \tau) \). But \(B \in \tau_1, \ i^{-1}(B) = B \leq int_c(pcl_c(i^{-1}(B))) = int_c(pcl_c(B)) = int_c(1_X \setminus A) = A \implies i \) is not fuzzy almost \(p \)-continuous function.

Remark 3.8. The inverse image of a fuzzy preopen set under fuzzy almost \(p \)-continuous function may not be fuzzy \(p^* \)-open follows from the following example.

Example 3.9. Let \(X = \{a, b\}, \ \tau = \{0_X, 1_X, A, B\}, \ \tau_1 = \{0_X, 1_X, C\} \) where \(A(a) = 0.5, A(b) = 0.3, B(a) = 0.5, B(b) = 0.4, C(a) = 0.5, C(b) = 0.4 \). Then \((X, \tau) \) and \((X, \tau_1) \) are fts’s. Consider the identity function \(i : (X, \tau) \to (X, \tau_1) \). Clearly \(i \) is fuzzy almost \(p \)-continuous. Indeed, \(FPO(X, \tau) = \{0_X, 1_X, U, V\} \) where \(U \leq B, V \leq 1_X \setminus A \) and \(FPC(X, \tau) = \{0_X, 1_X, 1_X \setminus U, 1_X \setminus V\} \).
where \(1 \chi \setminus U \geq 1 \chi \setminus B, 1 \chi \setminus V \geq A \). Then \(i^{-1}(C) = C = \text{int}_\tau(\text{pcl}_\tau(i^{-1}(C))) = \text{int}_\tau(\text{pcl}_\tau(C)) = \text{int}_\tau(1 \chi \setminus B) = B = C \). Consider a fuzzy set \(D \) in \(X \) defined by \(D(a) = 0.5, D(b) = 0.7 \). Then \(\text{int}_\tau(\text{cl}_\tau D) = \text{int}_\tau 1 \chi = 1 \chi > D \Rightarrow D \in \text{FPO}(X, \tau_i) \). Now \(i^{-1}(D) = D \). \(\text{int}_\tau(\text{pcl}_\tau(i^{-1}(D))) = \text{int}_\tau(\text{pcl}_\tau D) = \text{int}_\tau D = B \geq D \Rightarrow D \not\in \text{FP''O}(X) \).

Let us now recall the following definition and theorem from \cite{5} for ready references.

Definition 3.10 \cite{5}. A function \(f : X \rightarrow Y \) is said to be fuzzy almost continuous if for each fuzzy point \(x_\alpha \) in \(X \) and each fuzzy nbd \(V \) of \(f(x_\alpha) \) in \(Y \), \(\text{cl}(f^{-1}(V)) \) is a fuzzy nbd of \(x_\alpha \) in \(X \).

Theorem 3.11 \cite{5}. A function \(f : X \rightarrow Y \) is fuzzy almost continuous iff \(f^{-1}(B) \leq \text{int}(\text{cl}(f^{-1}(B))) \), for all fuzzy open set \(B \) in \(Y \).

Remark 3.12. Since for any fuzzy set \(A \) in an fts \((X, \tau) \), \(\text{pcl} A \leq \text{cl} A \), it is immediate that every fuzzy almost \(p \)-continuous function is fuzzy almost continuous. But the converse is not true, in general, follows from the following example.

Example 3.13. Let \(X = \{a\}, \ \tau = \{0_X, 1_X, B\}, \ \tau_i = \{0_X, 1_X, A\} \) where \(A(a) = 1/3, B(a) = 0.4 \). Then \((X, \tau) \) and \((X, \tau_i) \) are fts’s. Now \(\text{FPO}(X, \tau) = \{0_X, 1_X, U, V\} \) where \(U \leq B, V > 1_X \setminus B \) and \(\text{FPC}(X, \tau) = \{0_X, 1_X, 1_X \setminus U, 1_X \setminus V\} \) where \(1_X \setminus U \geq 1_X \setminus B, 1_X \setminus V < B \). Consider the identity function \(i : (X, \tau) \rightarrow (X, \tau_i) \). Clearly \(i \) is fuzzy almost continuous. Indeed, other than \(0_X \) and \(1_X \), \(A \) is the only fuzzy open set in \((X, \tau_i) \). Now \(\text{int}_\tau(\text{cl}_\tau(i^{-1}(A))) = \text{int}_\tau(\text{cl}_\tau A) = \text{int}_\tau(1_X \setminus B) = B \geq A = i^{-1}(A) \). But \(i \) is not fuzzy almost \(p \)-continuous. Because, \(\text{int}_\tau(\text{pcl}_\tau(i^{-1}(A))) = \text{int}_\tau(\text{pcl}_\tau A) = \text{int}_\tau A = 0_X \geq A \).

Lemma 3.14 \cite{2}. Let \(Z, X, Y \) be fts’s and \(f_1 : Z \rightarrow X \) and \(f_2 : Z \rightarrow Y \) be functions. Let \(f : Z \rightarrow X \times Y \) be defined by \(f(z) = (f_1(z), f_2(z)) \) for \(z \in Z \), where \(X \times Y \) is provided with the
product fuzzy topology. Then if B, U_1, U_2 are fuzzy sets in Z, X, Y respectively such that $f(B) \leq U_1 \times U_2$, then $f_1(B) \leq U_1$ and $f_2(B) \leq U_2$.

Theorem 3.15. Let Z, X, Y be fts’s. For any functions $f_1: Z \to X, f_2: Z \to Y$, if $f: Z \to X \times Y$, defined by $f(x) = (f_1(x), f_2(x))$, for all $x \in Z$, is fuzzy almost p-continuous, so are f_1 and f_2.

Proof. Let U_1 be any fuzzy open q-nbd of $f_1(x_\alpha)$ in X for any fuzzy point x_α in Z. Then $U_1 \times 1_Y$ is a fuzzy open q-nbd of $f(x_\alpha)$, i.e., $(f(x))_\alpha$ in $X \times Y$. Since f is fuzzy almost p-continuous, there exists $V \in FP^*O(Z)$ with $x_\alpha \in V$ such that $f(V) \leq U_1 \times 1_Y$. By Lemma 3.14, $f_1(V) \leq U_1$, $f_2(V) \leq 1_Y$. Consequently, f_1 is fuzzy almost p-continuous.

Similarly, f_2 is fuzzy almost p-continuous.

Lemma 3.16. [1]. Let X, Y be fts’s and let $g: X \to X \times Y$ be the graph of a function $f: X \to Y$. Then if A, B are fuzzy sets in X and Y respectively, $g^{-1}(A \times B) = A \cap f^{-1}(B)$.

Theorem 3.17. Let $f: X \to Y$ be a function from an fts X to an fts Y and $g: X \to X \times Y$ be the graph function of f. If g is fuzzy almost p-continuous, then f is so.

Proof. Let g be fuzzy almost p-continuous and B be a fuzzy set in Y. Then by Lemma 3.16, $f^{-1}(B) = 1_X \cap f^{-1}(B) = g^{-1}(1_Y \times B)$. Now if B is fuzzy open in Y, then $1_Y \times B$ is fuzzy open in $X \times Y$. Again, $g^{-1}(1_Y \times B) = f^{-1}(B) \in FP^*O(X)$ (by hypothesis) $\Rightarrow f$ is fuzzy almost p-continuous.
4. Fuzzy Almost p^*-Continuous Function: Some Characterizations

In this section a new type of function, viz., fuzzy almost p^*-continuous function is introduced and shown that inverse image under this function of any fuzzy p^*-open set is fuzzy p^*-open. It is shown that fuzzy almost p^*-continuous function is fuzzy almost p-continuous and the converse is true under certain condition.

Definition 4.1. A function $f : X \rightarrow Y$ is called fuzzy almost p^*-continuous if the inverse image of every fuzzy p^*-open set in Y is fuzzy p^*-open in X.

Theorem 4.2. For a function $f : X \rightarrow Y$, the following statements are equivalent:

(a) f is fuzzy almost p^*-continuous,

(b) for each fuzzy point x_α in X and each fuzzy p^*-open nbd V of $f(x_\alpha)$, there exists a fuzzy p^*-open nbd U of x_α in X and $f(U) \leq V$,

(c) $f^{-1}(F) \in FP^*C(X)$, for all $F \in FP^*C(Y)$,

(d) for each fuzzy point x_α in X, the inverse image under f of every fuzzy p^*-open nbd of $f(x_\alpha)$ is a fuzzy p^*-open nbd of x_α in X,

(e) $f(p^*clA) \leq p^*cl(f(A))$, for all $A \in I^X$,

(f) $p^*cl(f^{-1}(B)) \leq f^{-1}(p^*clB)$, for all $B \in I^Y$,

(g) $f^{-1}(p^*intB) \leq p^*int(f^{-1}(B))$, for all $B \in I^Y$.

Proof. The proof is similar to that of Theorem 3.4 and hence is omitted.

Theorem 4.3. A function $f : X \rightarrow Y$ is fuzzy almost p^*-continuous iff for each fuzzy point x_α in X and corresponding to any fuzzy p^*-open q-nbd V of $f(x_\alpha)$ in Y, there exists a fuzzy p^*-open q-nbd W of x_α in X such that $f(W) \leq V$.
Proof. The proof is similar to that of Theorem 3.5 and hence is omitted.

Remark 4.4. It is clear from definition that composition of two fuzzy almost p^*-continuous functions is fuzzy almost p^*-continuous.

Theorem 4.5. If $f : X \rightarrow Y$ is fuzzy almost p^*-continuous and $g : Y \rightarrow Z$ is fuzzy almost p-continuous, then $g \circ f : X \rightarrow Z$ is fuzzy almost p-continuous.

Proof. Obvious.

Remark 4.6. Every fuzzy almost p^*-continuous function is fuzzy almost p-continuous, but the converse is not true, in general, follows from the following example.

Example 4.7. Let $X = \{a\}$, $\tau = \{0_X, 1_X, A, B\}$, $\tau_1 = \{0_X, 1_X, C\}$ where $A(a) = 0.52$, $B(a) = 0.45$, $C(a) = 0.52$. Then (X, τ) and (X, τ_1) are fts’s. Now $FPO(X, \tau) = \{0_X, 1_X, U, V, W\}$ where $1_X \setminus A < U \leq A, V > 1_X \setminus B, W \leq B$ and $FPC(X, \tau) = \{0_X, 1_X, 1_X \setminus U, 1_X \setminus V, 1_X \setminus W\}$ where $1_X \setminus A \leq 1_X \setminus U < A, 1_X \setminus V < B, 1_X \setminus W \geq 1_X \setminus B$. $FPO(X, \tau_1) = \{0_X, 1_X, T\}$ where $T > 1_X \setminus C$ and $FPC(X, \tau_1) = \{0_X, 1_X, 1_X \setminus T\}$ where $1_X \setminus T < C$. Consider the identity function $i : (X, \tau) \rightarrow (X, \tau_1)$. Other than 0_X and 1_X, C is the only fuzzy open set in (X, τ_1). Now $i^{-1}(C) = C = int_\tau(pcl_\tau(C)) = int_\tau(1_X \setminus W)$ (where $(1_X \setminus W)(a) \geq 0.55 = A = C \Rightarrow i$ is fuzzy almost p-continuous. Let D be a fuzzy set in (X, τ), defined by $D(a) = 0.53$. Now $pcl_\tau(D) = 1_X$ and so $int_\tau(pcl_\tau(D)) = 1_X > D \Rightarrow D \in FP^*(O(X, \tau_1))$. Then $i^{-1}(D) = D$. But $int_\tau(pcl_\tau(i^{-1}(D))) = int_\tau(pcl_\tau(D)) = int_\tau(1_X \setminus B) = A < D \Rightarrow i$ is not fuzzy almost p^*-continuous.

Note 4.8. From Remark 3.12 and Remark 4.6, we say that every fuzzy almost p^*-continuous function is fuzzy almost p-continuous and hence fuzzy almost continuous. But the converses are not true follow from Example 4.7. Here also $i^{-1}(C) = C = int_\tau(cl_\tau(C)) = int_\tau(1_X \setminus B) = A = C \Rightarrow i$ is fuzzy almost continuous.
To achieve the converse of Remark 4.6, we have to introduce some sort of fuzzy open-like function, as follows.

Definition 4.9. A function \(f : X \to Y \) is said to be fuzzy preopen if \(f(U) \) is fuzzy preopen in \(Y \) for every fuzzy preopen set \(U \) in \(X \).

Lemma 4.10. If \(f : X \to Y \) is fuzzy preopen function, then \(f^{-1}(pcl(U)) \leq pcl(f^{-1}(U)) \), for any fuzzy set \(U \) in \(Y \).

Proof. Let \(x_\alpha \leq pcl(f^{-1}(U)) \) for some fuzzy set \(U \) in \(Y \). Then there exists \(W \in FPO(X) \) such that \(x_\alpha qW \), \(W \subseteq f^{-1}(U) \Rightarrow \) \(f(W) \subseteq gU \). As \(f \) is fuzzy preopen function, \(f(W) \in FPO(Y) \). Now \(x_\alpha qW \Rightarrow f(x_\alpha) qf(W) \Rightarrow f(W) \) is a fuzzy preopen \(q \)-nbd of \(f(x_\alpha) \) in \(Y \), but \(f(W) \notin pclU \Rightarrow x_\alpha \notin pclU \).

Theorem 4.11. If \(f : X \to Y \) is fuzzy almost \(p \)-continuous and fuzzy preopen function, then \(f \) is fuzzy almost \(p^* \)-continuous function.

Proof. Let \(V \in FPO(Y) \). Then \(V \leq int(pclV) \). Since \(f \) is fuzzy almost \(p \)-continuous, \(f^{-1}(V) \leq f^{-1}(int(pclV)) \leq int(pcl(f^{-1}(int(pclV)))) \) (by Theorem 3.4 (a) \(\iff \) (b)) \(\leq int(pcl(f^{-1}(pclV))) \leq int(pcl(pcl(f^{-1}(V)))) \) (by Lemma 4.10) \(= int(pcl(f^{-1}(V))) \) \(\Rightarrow f^{-1}(V) \in FPO(X) \Rightarrow f \) is fuzzy almost \(p^* \)-continuous.

5. Fuzzy \(p^* \)-Regular Space

In this section a new type of fuzzy regularity is introduced and shown that in this space fuzzy closed (resp., fuzzy open) set and fuzzy \(p^* \)-closed (resp., fuzzy \(p^* \)-open) set coincide.

Definition 5.1. An fts \((X, \tau) \) is said to be fuzzy \(p^* \)-regular if for each fuzzy \(p^* \)-closed set \(F \) in \(X \) and each fuzzy point \(x_\alpha \) in \(X \) with \(x_\alpha q(1_X \setminus F) \), there exist a fuzzy open set \(U \) in \(X \) and a
fuzzy p^*-open set V in X such that $x_\alpha qU$, $F \leq V$ and UqV.

Theorem 5.2. For an fts (X, τ), the following statements are equivalent:

(a) X is fuzzy p^*-regular,

(b) for each fuzzy point x_α in X and each fuzzy p^*-open set U in X with $x_\alpha qU$, there exists a fuzzy open set V in X such that $x_\alpha qV \leq p^*clV \leq U$,

(c) for each fuzzy p^*-closed set F in X, $\bigcap\{clV: F \leq V, V \in FP^*O(X)\} = F$,

(d) for each fuzzy set G in X and each fuzzy p^*-open set U in X such that GqU, there exists a fuzzy open set V in X such that GqV and $p^*clV \leq U$.

Proof (a) \Rightarrow (b). Let x_α be a fuzzy point in X and U, a fuzzy p^*-open set in X with $x_\alpha qU$. By (a), there exist a fuzzy open set V and a fuzzy p^*-open set W in X such that $x_\alpha qV$, $1_X \setminus W \leq W \setminus U$, VqW. Then $x_\alpha qV \leq 1_X \setminus W \leq U \Rightarrow x_\alpha qV$ and $p^*clV \leq p^*cl(1_X \setminus W) = 1_X \setminus W \leq U \Rightarrow x_\alpha qV \leq p^*clV \leq U$.

(b) \Rightarrow (a). Let F be a fuzzy p^*-closed set in X and x_α be a fuzzy point in X with $x_\alpha q(1_X \setminus F)$. Then $1_X \setminus F \in FP^*O(X)$. By (b), there exists a fuzzy open set V in X such that $x_\alpha qV \leq p^*clV \leq 1_X \setminus F$. Put $U = 1_X \setminus p^*clV$. Then $U \in FP^*O(X)$ and $x_\alpha qV$, $F \leq U$ and UqV.

(b) \Rightarrow (c). Let F be fuzzy p^*-closed set in X. It is clear that $F \leq \bigcap\{clV: F \leq V, V \in FP^*O(X)\}$.

Conversely, let $x_\alpha \not\in F$. Then $F(x) < \alpha \Rightarrow x_\alpha q(1_X \setminus F)$ where $1_X \setminus F \in FP^*O(X)$. By (b), there exists a fuzzy open set U in X such that $x_\alpha qU \leq p^*clU \leq 1_X \setminus F$. Put $V = 1_X \setminus p^*clU$. Then
Fuzzy Almost p-Continuous and Almost p^*-Continuous Functions

$F \leq V$ and $UqV \Rightarrow x_{\alpha} \not\subseteq clV \Rightarrow \bigcap\{clV : F \leq V, V \in FP^*O(X)\} \leq F$.

(c) \Rightarrow (b). Let V be any fuzzy p^*-open set in X and x_{α} be any fuzzy point in X with $x_{\alpha}qV$. Then $V(x) + \alpha > 1 \Rightarrow x_{\alpha} \not\subseteq (1_x \setminus V)$ where $1_x \setminus V \in FP^*C(X)$. By (c), there exists $G \in FP^*O(X)$ such that $1_x \setminus V \leq G$ and $x_{\alpha} \not\subseteq clG \Rightarrow$ there exists a fuzzy open set U in X with $x_{\alpha}qU$, $UqG \Rightarrow U \setminus 1_x \setminus V \leq G \Rightarrow x_{\alpha}qU \leq p^*clU \leq p^*cl(1_x \setminus G) = 1_x \setminus G \leq V$.

(c) \Rightarrow (d). Let G be any fuzzy set in X and U be any fuzzy p^*-open set in X with GqU. Then there exists $x \in X$ such that $G(x) + U(x) > 1$. Let $G(x) = \alpha$. Then $x_{\alpha}qU \Rightarrow x_{\alpha} \not\subseteq 1_x \setminus U$ where $1_x \setminus U \in FP^*C(X)$. By (c), there exists $W \in FP^*O(X)$ such that $1_x \setminus U \leq W$ and $x_{\alpha} \not\subseteq clW \Rightarrow (clW)(x) < \alpha \Rightarrow x_{\alpha}q(1_x \setminus clW)$. Let $V = 1_x \setminus clW$. Then V is fuzzy open in X and $V(x) + \alpha > 1 \Rightarrow V(x) + G(x) > 1 \Rightarrow VqG$ and $p^*clV = p^*cl(1_x \setminus clW) \leq p^*cl(1_x \setminus W) = 1_x \setminus W \leq U$.

(d) \Rightarrow (b). Obvious.

Note 5.3. It is clear from Theorem 5.2 that in a fuzzy p^*-regular space, every fuzzy p^*-closed set is fuzzy closed and hence every fuzzy p^*-open set is fuzzy open. As a result, in a fuzzy p^*-regular space, the collection of all fuzzy closed (resp., fuzzy open) sets and fuzzy p^*-closed (resp., fuzzy p^*-open) sets coincide.

Theorem 5.4. If $f : X \rightarrow Y$ is fuzzy almost p-continuous function and Y is fuzzy p^*-regular space, then f is fuzzy almost p^*-continuous.

Proof. Let x_{α} be a fuzzy point in X and V be any fuzzy p^*-open q-nbd of $f(x_{\alpha})$ in Y where Y is fuzzy p^*-regular space. By Theorem 5.2 (a) \Rightarrow (b), there exists a fuzzy open set W in Y such that $f(x_{\alpha})qW \leq p^*clW \leq V$. Since f is fuzzy almost p-continuous, by Theorem 3.5, there exists $U \in FP^*O(X)$ with $x_{\alpha}qU$ and $f(U) \leq W \leq V$. By Theorem 4.3, f is fuzzy almost p^*-continuous.
-continuous function.

Let us now recall following definitions from [3,4] for ready references.

Definition 5.5 [3]. A collection \mathcal{U} of fuzzy sets in an fts X is said to be a fuzzy cover of X if $\bigcup \mathcal{U} = 1_X$. If, in addition, every member of \mathcal{U} is fuzzy open, then \mathcal{U} is called a fuzzy open cover of X.

Definition 5.6 [3]. A fuzzy cover \mathcal{U} of an fts X is said to have a finite subcover \mathcal{U}_0 if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigcup \mathcal{U}_0 = 1_X$.

Definition 5.7 [4]. An fts (X, τ) is said to be fuzzy almost compact if every fuzzy open cover \mathcal{U} of X has a finite proximate subcover, i.e., there exists a finite subcollection \mathcal{U}_0 of \mathcal{U} such that $\{clU : U \in \mathcal{U}_0\}$ is again a fuzzy cover of X.

Theorem 5.8. If $f : X \rightarrow Y$ is a fuzzy almost p-continuous surjective function and X is fuzzy p^*-regular and fuzzy almost compact space, then Y is fuzzy almost compact space.

Proof. Let $\mathcal{U} = \{U_\alpha : \alpha \in \Lambda\}$ be a fuzzy open cover of Y. Then as f is fuzzy almost p-continuous, $\mathcal{V} = \{f^{-1}(U_\alpha) : \alpha \in \Lambda\}$ is a fuzzy p^*-open cover and hence fuzzy open cover of X as X is fuzzy p^*-regular space. Since X is fuzzy almost compact, there are finitely many members U_1, U_2, \ldots, U_n of \mathcal{U} such that $\bigcup_{i=1}^n cl(f^{-1}(U_i)) = 1_X$. Since X is fuzzy p^*-regular space, by Theorem 5.2, $clA = p^*clA$ and so $1_X = \bigcup_{i=1}^n p^*cl(f^{-1}(U_i)) \Rightarrow 1_Y = f(\bigcup_{i=1}^n p^*cl(f^{-1}(U_i))) = \bigcup_{i=1}^n f(p^*cl(f^{-1}(U_i))) \leq \bigcup_{i=1}^n cl(f(f^{-1}(U_i)))$ (by Theorem 3.4 (a) \Rightarrow (f)) $\leq \bigcup_{i=1}^n cl(U_i) \Rightarrow \bigcup_{i=1}^n cl(U_i) = 1_Y \Rightarrow Y$ is fuzzy almost compact space.
References

