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Abstract 

In this paper we characterize the convexity and the natural quasiconvexity of locally Lipschitz vector functions 

via the monotonicity and the quasimonotonicity of their Mordukhovich coderivatives. 
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1. Introduction 

In the last decades generalized convexity and generalized monotonicity have been widely and 

intensively study [ 8 ] since they have vast applications in several fields of sciences such as mathematical 

optimization, economics, finance etc. 

The generalized convexity of functions are usually characterized by their generalized derivatives, 

directional derivatives or subdifferential [7] such as the Clarke generalized gradient and Jacobian [2], the 

generalized Dini directional derivative [2] and the Clarke-Rockafellar generalized subdifferential [13, 1, 

18]. 

Recently, the concept of coderivative introduced by Mordukhovich has proved to be an efficient tool 

to treat problems in variational analysis, optimization and control optimization [14]. A natural question 

arises: can we use Mordukhovich coderivative to investigate characterizations of generalized convexity of 

Corresponding author: Phan Nhat Tinh, Department of Mathematics, Faculty of sciences, University of Hue, 
Vietnam. 

 

                                                        



Characterizations of Generalized Convex Functions in Terms of Coderivative 124 

functions, particularly for vector-valued functions? The aim of this paper is to answer this question. Beside 

convex vector functions, the naturally quasiconvex vector functions introduced by Tanaka [17] are 

considered. As shown in [17, 11], this class of functions lies at the center of several kinds of generalized 

convex vector functions and it plays an important role in the proof of several basic theorems of vector 

optimization such as the sadle point theorem, the minimax theorem and the solvalidity theorem. 

The paper is organized as follows. In the next section we introduce some preliminaries. Section 3 

study characterizations of convex vector functions. The last section is devoted to characterizations of 

naturally quasiconvex vector functions. 

2. Preliminaries 

We denote the convex hull and the interior of a set nA ⊂   by co A  and int A . Let 

[ ]nφ : → := −∞,+∞   be lower semicontinuous and finite at nx ∈ . The Dini upper directional 

derivative of φ  at x  in direction nu ∈ , which is denoted ( )x uφ +′ ; , is defined by  

 
0

( ) ( )( ) lim sup
t

x tu xx u
t

φ φ
φ +

↓

+ −′ ; := .  

The Clarke-Rockafellar subgradient [16] of φ  at x  is given by  

 ( ) { | ( ) }n n
CR x x x u x u uφ φ∗ ∗ ↑∂ := ∈ , ≤ ; ,∀ ∈ ,   

where  

 
0

( )0

( ) ( )( ) sup limsup inf
t

u B ux x

x tu xx u
tφ

εε

φ φφ
↓

↑

′∈ ,′> →

′ ′ ′+ −
; :=  

is the Clarke-Rockafellar directional derivative of φ  at x  in the direction u .  

Now assume that φ  is locally Lipschitz at x . Then the Clarke directional derivative [4] of φ  at 

x  in the direction u  is defined as the following limit  

 
0

( ) ( )( ) limsup
x x t

x tu xx u
t

φ φφ
′→ ; ↓

′ ′+ −
; := .  
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Obviously, ( ) ( )x u x uφφ +′ ; ≤ ; .  The Clarke generalized gradient of φ  at x , which is denoted 

( )C xφ∂ , is defined by  

 ( ) { | ( ) }n n
C x x x u x u uφ φ∗ ∗∂ := ∈ , ≤ ; ,∀ ∈ .   

For locally Lipschitz functions, the Clarke-Rockafellar subgradient coincides with the Clarke 

generalized gradient. See Clarke [4] and Rockafellar [15, 16] for further properties. 

Let n mf : →   be locally Lipschitz at nx ∈ . The Clarke generalized Jacobian of f  at 

nx ∈  is defined as  

( ) co{lim ( )  ( ) exists}C k k kk
f x Jf x x x Jf x

→∞
∂ := : → , ,  

where ( )kJf x  denotes the Jacobian of f  at kx . When 1m =  the Clarke generalized Jacobian 

coincides with the Clarke generalized gradient.  

For mξ ∈ , we define the function nfξ : →   as follows.  

 ( ) ( ) nf x f x xξ ξ:= , , ∀ ∈ .  

The link between the Clarke generalized Jacobian of the vector function f  and the Clarke 

directional derivative of the real function fξ  at x  in the direction nu ∈  is given by  

 
( )

( ) ( ) max
CM f x

f x u Muξ ξ
∈∂

; = , .  

Next we recall some notions from [14]. Let F: n ⇉ m  be a set-valued map. The sequential 

Painlevé-Kuratowski upper limit of F  as x x→  is defined by  

 Limsup ( ) { | ( ) s t }m
k k k k

x x
F x y x x y F x y y

→
:= ∈ ∃ → , ∈ . . → .  

Definition 2.1 Let nφ : →   be finite at nx ∈  and let 0ε ≥ . The ε -subdifferential of φ  
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at x  is the set ˆ ( )xεφ∂  defined by  

 
( ) ( )

ˆ ( ) | lim inf
|| ||

n

x x

x x x x x
x x

x xε

φ φ
ϕ ε

∗
∗

→

 − − , − := ∈ ≥ − . ∂ −  
  

We put ˆ ( )xεφ = ∅∂  if | ( ) |xφ = ∞ . When 0ε =  the set ˆ ( )xεφ∂ , denoted by ˆ ( )xφ∂ , is called 

the Fréchet subdifferential  of φ  at x . The limiting subdifferential (or Mordukhovich subdifferential) 

of φ  at x  is given by  

 
0

ˆ( ) Limsup ( )
x x

x xε
ε

φ φ
→ ; ↓

∂ := .∂  

Definition 2.2 The Mordukhovich normal cone to nA ⊂   at x A∈  is defined by  

 ( ) ( )N x A x Aδ; := ∂ ; ,  

where ( )Aδ .;  is the indicator function of A .  

Let n mf : →   be a vector function and denote its graph by gph f .  

Definition 2.3 The Mordukhovich coderivative of f  at nx ∈  is the set-valued map ( )MD f x :

m ⇉ n defined by  

 ( )( ) { | ( ) (( ( )) gph )}M nD f x v u u v N x f x f:= ∈ ,− ∈ , ; .  

For locally Lipschitz functions, we have the link between the Modurkhovich coderivative and the 

Clarke generalized Jacobian as follows.  

Lemma 2.4 ([10]) If f is locally Lipschitz at nx ∈ , then ( )MD f x  consists of n m× -matrices 

and satisfies the following set equality  

 [ ] ( )( ) co ( ) ( )( ) M m
C v D f x v vf x  = , ∀ ∈ .∂     
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(Where [ ]( )C f x∂ 
 is the set of transposed matrices of ( )C f x∂ .) 

3. Characterizations of Convex Vector-Valued Functions 

From now on we assume that m  is ordered by a closed and convex cone mK ⊂  , 

n mf : →   is a vector function and nE ⊂   is a nonempty open convex set. Each vector of n  or 

m  is also considered as a 1n×  or 1m×  matrix. By K ′  we denote the polar cone of K , i.e.,  

 { | 0 }mK v v Kξ ξ′ := ∈ , ≥ , ∀ ∈ .  

We recall that f  is called convex with respect to K  on E  if for every (0 1)x y E λ, ∈ , ∈ , ,  

 ( ) (1 ) ( ) ( (1 ) )f x f y f x y Kλ λ λ λ+ − ∈ + − + .  

Supposing int K ≠ ∅ , f  is called strictly convex with respect to K  on E  if for every 

(0 1)x y E x y λ, ∈ , ≠ , ∈ , ,  

 ( ) (1 ) ( ) ( (1 ) ) intf x f y f x y Kλ λ λ λ+ − ∈ + − + .  

Denote the space of m n× -matrices by ( )n mL ,  . Let E: ⇉ ( )n mL ,   be a set-valued map 

with nonempty values. For any mξ ∈ , we define the set-valued map ξ : E⇉ ( )nL ,   by  

 ( ) { ( )}x M M xξ ξ:= : ∈ ,   

where ξ   is the transpose of ξ .  

Definition 3.1 We say that  

i)   is monotone with respect to K  on E  if  

 ( )( ) ( )( )x y x y x y K x y E− + − ⊂ − ,∀ , ∈ .   

ii) Supposing int K ≠ ∅ ,   is strictly monotone with respect to K  on E  if  
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 ( )( ) ( )( ) intx y x y x y K x y E x y− + − ⊂ − ,∀ , ∈ , ≠ .   

(Where ( )( ) { ( )}x v Mv M x:= : ∈  ). Observe that when 1m =  and K +=  , Definition 3.1 

collapses to the classical concept of monotonicity, i.e.,   is monotone (resp., strictly monotone) if  

 ( ) ( ) 0x y E x y x y y x x yξ η ξ η∀ , ∈ , ≠ , ∈ , ∈ , , − + , − ≤ .   

 (resp 0 )y x x yξ η., , − + , − < .  

The following results ([9]) will be needed. 

Lemma 3.2 For any mc ∈ , we have  

i) c K∈  if and only if 0}\0 {c Kξ ξ ′, ≥ ,∀ ∈ .   

ii) Supposing int , intK c K≠ ∅ ∈  if and only if 0}\0 {c Kξ ξ ′, > ,∀ ∈ .   

Proposition 3.3 i)   is monotone with respect to K  if and only if ξ  is monotone in the 

classical sense for every {0}\Kξ ′∈ .  

ii) Supposing int K ≠ ∅ ,   is strictly monotone with respect to K  if and only if ξ  is strictly 

monotone in the classical sense for every {0}\Kξ ′∈ .  

Proof. i) For the ’only if’ part, let {0}\Kξ ′∈  be arbitrary. For every x y E, ∈ , since   is 

monotone, ( )( ) ( )( )x y x y x y K− + − ⊂ −  . Then by Lemma 2.4, we have 

[ ]( )( )( ) ( )( )( ) ( )( ) ( )( )x y x y x y x y x y x yξ ξ ξ +− + − = − + − ⊂ −     which implies the 

monotonicity of ξ .  

For the ’if’ part, suppose in the contrary that   is not monotone. Then there exist x y E, ∈  such 

that  

 ( )( ) ( )( )x y x y x y K− + − − .   
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Let ( )( ) ( )( )z x y x y x y∈ − + −   and z K∉ − . By using the strong separation theorem, one can 

find 0\( ) { }mLξ ∈ ,   so that supz v K vξ ξ, > ∈ − ,  which implies {0}\Kξ ′∈  and ( ) 0zξ > . 

Therefore ξ  is not monotone. We get a contradiction.  

ii) The proof is quite similar to the one of i).   

For any nx y, ∈  we set  

 

[ ] { (1 ) | 0 1}
( ) { (1 ) | 0 1}
[ ) { (1 ) | 0 1}

x y x y
x y x y
x y x y

λ λ λ
λ λ λ
λ λ λ

, := + − ≤ ≤
, := + − < <
, := + − < ≤ .

 

Lemma 3.4 (Diewert’s mean value theorem [5]) Let nD ⊂   be a nonempty convex set and 

Dφ : →   be a lower semicontinuous function. Then, for every a b D a b, ∈ , ≠ ,  there exists 

[ )c a b∈ ,  satisfying  

 ( ) ( ) ( )c b a b aφ φφ +′ ; − ≥ − .  

Now assume that f  is locally Lipschitz on E . We define the set-valued map [co ]MD f E: ⇉

( )n mL ,   by  

 [co ] ( ) [co( ( ))]M MD f x D f x x E:= , ∀ ∈ ,   

where [co( ( ))]MD f x   is the set of transpose matrices of co( ( ))MD f x .  

Theorem 3.5 Assume that f  is locally Lipschitz on E . Then f  is convex with respect to K  

on E  if and only if [co ]MD f   is monotone with respect to K  on E .  

Proof. For the ’if’ part, we assume that [co ]MD f   is monotone with respect to K  on E . 

Suppose that f  is not convex on E . Then there exist \{0}Kξ ′∈ ,  (0 1)x y E x y λ, ∈ , ≠ , ∈ ,  such 

that  
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 ( )( (1 ) ) ( )( ) (1 )( )( )f x y f x f yξ λ λ λ ξ λ ξ+ − > + − .  (1) 

Set (1 )z x yλ λ:= + − .  By Diewert’s mean value theorem, there exist 1 2[ ) [ )c x z c y z∈ , , ∈ ,  such 

that  

 1 2( ( ) ( )( ) ( )( ) ( ( ) ( )( ) ( )( )) )f c z x f z f x f c z y f z f yξ ξ ξ ξ ξ ξ+ +′ ′; − ≥ − , ; − ≥ − .  

Since (1 )( ) ( )z x y x z y x yλ λ− = − − , − = −  and the Dini upper direction derivative is positive 

homogenous , we have  

 1

2

(1 )( ( ) [( )( ) ( )( )])
(1 )( ( ) (1 )[( )( ) ( )( )])

f c y x f z f x
f c y x f z f y

λ λ ξ λ ξ ξ
λ λ ξ λ ξ ξ

+

+

′− ; − ≥ −
′− ; − ≥ − − .

 (2) 

By (1),  

 
[( )( ) ( )( )] (1 )[( )( ) ( )( )]

(1 )[( )( ) ( )( )] (1 )[( )( ) ( )( )]
f z f x f y f x

f z f y f x f y
λ ξ ξ λ λ ξ ξ

λ ξ ξ λ λ ξ ξ
− > − − ,

− − > − −
 

which together with (2) imply  

 1 2( ( ) ( ( ) 0) )f c y x f c x yξ ξ+ +′ ′; − + ; − > .  (3) 

Observe that we can find a number 0α >  such that  

 2 1( )y x c cα− = − .  (4) 

By positive homogeneity of Dini upper directional derivatives, (3) and (4) give us  

 1 2 1 2 1 2( ( ) ( ( ) 0) )f c c c f c c cξ ξ+ +′ ′; − + ; − > .  

Taking in account Lemma 4 and the properties of Clarke subdifferential, we have  
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21

1 2

2 1 1 2
[co ( )][co ( )]

2 1 1 2( ) ( )

1 2 1 2 1 2

1 2 1 2 1 2

sup ( ) sup ( )

max ( ) max ( )

( ) ( ) ( ) ( )
( ( ) ( ( )) )
0

MM

C C

N D f cM D f c

M f c N f c

M c c N c c

M c c N c c

f c c c f c c c
f c c c f c c c

ξ ξ

ξ ξ

ξ ξ
ξ ξ

∈∈

∈∂ ∈∂

+ +

− + −

= − + −

= ; − + ; −
′ ′≥ ; − + ; −

> .

 



 

 

 

Therefore there exist 1 2co( ( )) co( ( ))M MM D f c N D f c   ∈ , ∈   
 

 so that  

 2 1 1 2( ) ( ) 0M c c N c cξ ξ− + − >   

which implies co MD fξ   


 is not monotone on E  by definitions. Using Proposition 2, we see that 

[co ]MD f   is not monotone (with respect to K  on E ) contradicting the assumption. Thus f  is 

convex with respect to K  on E .  

For the ’only if’ part, let {0}\Kξ ′∈ , x y E, ∈  and [co( ( ))] [co( ( ))]M MM D f x N D f x∈ , ∈   

be arbitrary. By Lemma 2.4, there exist 1 1( ) ( )C CM f x M f x∈∂ , ∈∂  such that  

 1 1( ) ( ) ( ) ( )M y x N x y M y x N x yξ ξ ξ ξ− + − = − + − .     (5) 

By convexity of the scalar function fξ , we have  

 1 1( ) ( ) ( ( ) ( ( ) 0) )M y x N x y f x y x f y x yξ ξ ξ ξ+ +′ ′− + − ≤ , − + , − ≤ .   (6) 

The relation (5) and (6) imply the monotonicity of [co( )]MD fξ  . Since this is true for any 

{0}\Kξ ′∈ , [co( )]MD f   is monotone with respect to K  on E  by Proposition 2.   

Theorem 3.6 Assume that int K ≠ ∅  and f  is locally Lipschitz on E . Then f  is strictly 

convex with respect to K  on E  if and only if [co ]MD f   is strictly monotone with respect to K  on 

E .  
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Proof. It is quite similar the proof of Theorem 3.5. 

4. Characterizations of quasiconvex vector-valued functions 

Let E K f, ,  be as in Section 3.  

Definition 4.1 [17] i) The function f is said to be naturally quasiconvex with respect to K on E if for 

every x,y [ ]E z x y∈ , ∈ , , we have  

 ( ) [ ( ) ( )]f z f x f y K∈ , − .  

ii) Supposing int K ≠ ∅ , f  is said to be strictly naturally quasiconvex with respect to K  on E  

if for every ( )x y E x y z x y, ∈ , ≠ , ∈ , ,  

 ( ) [ ( ) ( )] intf z f x f y K∈ , − .  

Obviously, when 1m =  and K +=   the above definition collapses to the classical concept of 

quasiconvexity of scalar functions, i.e., f  is said to be quasiconvex (resp., strictly quasiconvex) if for 

every ( )x y E x y z x y, ∈ , ≠ , ∈ , ,  

 ( ) max{ ( ) ( )}(resp ( ) max{ ( ) ( )})f z f x f y f z f x f y≤ , ., < , .  

Proposition 4.2 i) The function f  is naturally quasiconvex with respect to K  on E  if and only 

if fξ  is quasiconvex on E  for every \{0}Kξ ′∈ .   

ii) Supposing int K ≠ ∅ , f  is strictly naturally quasiconvex with respect to K  on E  if and only 

if fξ  is strictly quasiconvex on E  for every \{0}Kξ ′∈ .   

Proof. i) For the ’only if’ part, let {0}\Kξ ′∈  be arbitrary. For every [ ]x y E z x y, ∈ , ∈ , , we have 

( ) [ ( ) ( )]f z f x f y K∈ , − . Then ( )( ) [( )( ) ( )( )]f z f x f yξ ξ ξ +∈ , −  which implies 
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( )( ) max{( )( ) ( )( )}f z f x f yξ ξ ξ≤ , .  Hence fξ  is quasiconvex. Conversely, seeking a contradiction 

suppose that f  is not naturally quasiconvex. Then there exist [ ]x y D z x y, ∈ , ∈ ,  such that  

 ( ) [ ( ) ( )]f z f x f y K∉ , − .  

The set [ ( ) ( )]f x f y K, −  is closed, since K  is closed, and [ ( ) ( )]f x f y,  is compact. Then, by 

the strong separation theorem, there exists {0}\mξ ∈  such that  

 ( )( ) sup ([ ( ) ( )] )f z f x f y Cξ ξ> , − .  (7) 

Next we show that Kξ ′∈ . Indeed, suppose that Kξ ′∉ . Then there is c K∈  so that 0cξ, < . 

Then there exists 0t >  such that ( )( ) ( )( )t c f x f zξ ξ ξ, < − , i.e., ( )( ) ( )( )f z f x tcξ ξ ξ< − , . But 

this contradicts (7).  

Since  

 
sup ([ ( ) ( )] ) sup [ ( ) ( )]

max{( )( ) ( )( )}
f x f y C f x f y

f x f y
ξ ξ

ξ ξ
, − = ,

= , ,

 

 (8) 

(7) and (8)imply that fξ  is not quasiconvex which contradicts assumptions. Hence f  is naturally 

quasiconvex.  

ii) Analogously.   

Remark 4.3 Proposition 4.2 i) differ from [6, Proposition 3.9] since the ordering cone is not 

required to have a nonempty interior. 

Let ( )n mE L: ⇒ ,   be a set valued map with nonempty values.  

Definition 4.4 We say that  

i)   is quasimonotone with respect to K  on E  if for every ( ) ( )x y E M F x N F y, ∈ , ∈ , ∈   

 [ ( ) ( )]M y x N x y K− , − ∩ − ≠ ∅.  
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ii) Supposing int K ≠ ∅ , F  is strictly quasimonotone with respect to K  on E  if for every 

( ) ( )x y E x y M x N y, ∈ , ≠ , ∈ , ∈    

 [ ( ) ( )] intM y x N x y K− , − ∩ − ≠ ∅.  

We observe that when 1m =  and K +=  , Definition 4.4 collapses to the classical concept of 

quasimonotonicity.  

Proposition 4.5 i)   is quasimonotone with respect to K  on E  if and only if ξ  is 

quasimonotone (in the classical sense) on E  for every {0}\Kξ ′∈ .  

ii) Supposing int K ≠ ∅ ,   is strictly quasimonotone with respect to K  on E  if and only if 

ξ  is strictly quasimonotone (in the classical sense) on E  for every {0}\Kξ ′∈ .  

Proof. i) For the ’only if’ part , let {0}\K x y Eξ ′∈ , , ∈  and ( ) ( )M x N y∈ , ∈   be arbitrary. 

Since   is quasimonotone,  

 [ ( ) ( )]M y x N x y K− , − ∩ − ≠ ∅.  

Hence,  

 [ ( ) ( )]M y x N x yξ ξ +− , − ∩ − ≠ ∅.   

Equivalently,  

 min{ ( ) ( )} 0M y x N x yξ ξ− , − ≤ ,   

which implies the monotonicity of ξ .  

Conversely, suppose in the contrary that   is not quasimonotone. Then there exists 

( ) ( )x y E M x y y, ∈ , ∈ , ∈   such that  

 [ ( ) ( )]M y x N x y K− , − ∩ − = ∅.  (9) 
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Since K  is closed, using the strong separation theorem, one can find {0}\mξ ∈  so that  

 sup ( ) min [ ( ) ( )]K M y x N x yξ ξ− < − , − .   

This inequality implies that {0}\Kξ ′∈  and  

 min{ ( ) ( )} 0M y x N x yξ ξ− , − > .   

Therefore ξ  is not quasimonotone. We get a contradiction.  

ii) Analogously.   

Lemma 4.6 [1, Proposition 2.2 ] Let X be a Banach space. Then, the Clarke Rockerfellar 

subdifferential of any quasiconvex function { }Xφ : → ∪ +∞  is quasimonotone.  

Theorem 4.7 Assume that f  is locally Lipschitz on E . Then f  is naturally quasiconvex with 

respect to K  on E  if and only if [co ]MD f   is quasimonotone with respect to K  on E .  

Proof. For the ’only if’ part, let {0}\K x y Eξ ′∈ , , ∈  and [co ] ( ) [co ] ( )M MM D f x N D f y∈ , ∈   

be arbitrary. Then fξ  is quasiconvex on E  by Proposition 4.2 Since f  is locally Lipschitz, the 

Clarke generalized gradient of fξ  coincides with the Clarke-Rockafellar subgradient. Hence by Lemma 

4.6, C fξ∂  is quasimonotone on E , which together with Lemma 4.6 give us  

 min{ ( ) ( )} 0M y x N x yξ ξ− , − ≤ .   

Hence [co ]MD fξ   is quasimonotone on E  for any {0}\Kξ ′∈ . By Proposition 3, [co ]MD f   

is quasimonotone with respect to K  on E .  

Conversely, suppose in the contrary that f  is not naturally quasiconvex on E . By Proposition 4.5, 

there is {0}\Kξ ′∈  so that fξ  is not quasiconvex. Then there are ( )x y E x y z x y, ∈ , ≠ , ∈ ,  

satisfying  
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 ( )( ) max{( )( ) ( )( )}f z f x f yξ ξ ξ> , .  

By Diewert’s mean valued theorem, there exist 1 2[ ) [ )c x z c y z∈ , , ∈ ,  such that  

 1

2

( ( ) ( )( ) ( )( ) 0)
( ( ) ( )( ) ( )( ) 0)

f c z x f z f x
f c z y f z f y

ξ ξ ξ
ξ ξ ξ

+

+

′ ; − ≥ − >
′ ; − ≥ − > .

 

Observe that there are 0α β, >  so that 2 1 1 2( ) ( )z x c c z y c cα β− = − , − = − , then by the positive 

homogeneity of the Dini upper directional derivative, we have  

 1 2 1 2 1 2( ( ) 0 ( ( ) 0) )f c c c f c c cξ ξ+ +′ ′; − > ; ; − > .  

Using properties of Clark generalized Jacobian, we can find 1 2( ) ( )C CM f c N f c∈∂ , ∈∂  satisfying  

 2 1 1 2 1

1 2 2 1 2

( ) ( ( ) 0)

( ) ( ( ) 0)

M c c f c c c

N c c f c c c

ξ ξ

ξ ξ
+

+

′− ≥ ; − >

′− ≥ ; − > .




 

By Lemma 4, there exist 1 1 1 2[co ] ( ) [co ] ( )M MM D f c N D f c∈ , ∈   so that  

 1 2 1 2 1

1 1 2 1 2

( ) ( ) 0

( ) ( ) 0

M c c M c c
N c c N c c

ξ ξ

ξ ξ

− = − >

− = − >

 

 
 

which implies that [co ]MD fξ   is not quasimonotone on E . Then by Proposition 4.5, [co ]MD f   is 

not quasimonotone. We get a contradiction.   

Theorem 4.8 Assume that int K ≠ ∅  and f  is locally Lipschitz on E . If [co ]MD f   is strictly 

quasimonotone with respect to K  on E  then, f  is strictly naturally quasiconvex with respect to K  

on E .  

Proof. It is similar the proof of the ’if’ part of Theorem 4.7.   

We should note that in general the converse statement of Theorem 4.8 is not true. For instant, 

consider the function ( 1 3)φ : − , →   defined as follows.  
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2

2

2

2

   1 0
   0 1

( )
1 ( 2)    1 2
2 ( 2)    2 3

x x
x x

x
x x
x x

φ

 − , − < <


, ≤ <:= 
− − , ≤ <

 + − , ≤ < .

 

Then 

2    1 0
2    0 1

( )
2( 2)    1 2
2( 2)    2 3

x x
x x

x
x x
x x

φ

− , − < <
 , ≤ <′ = − − , ≤ <
 − , ≤ <

 

and 

{ }co( ( )) ( ) ,  ( 1,3).MD f x x xφ′  = ∀ ∈ − 


 

We see that φ  is strictly quasiconvex but co MD f  


is not strictly quasimonotone since there are 

0, 2, 0 co ( )Mx y M D f x = = = ∈  


, 0 co ( )MN D f y = ∈  


 with { }min ( ), ( ) 0M y x N x y− − = . 
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