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Abstract

In this paper, a general integral identity for differentiable mapping is derived. Then, we extend some
estimates of the right hand and left hand side of a Hermite- Hadamard-Fejér type inequality for functions
whose first derivatives absolute values are s convex. Some applications for special means of real numbers

are also provided. The results presented here would provide extensions of those given in earlier works.
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1. Introduction

The following inequality is well known in the literature as the Hermite-Hadamard integral inequality

(see, [2], [6]):

f(a;bng "t (dx <2+ T(b) 1)
2 b-a-’a 2

where f:l <R —>R is a convex function on the interval | of real numbers and a,bel with

a<b.
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Definition 1. The function f :[a,b]c R — R, is said to be convex if the following inequality
holds

fF(AX+A-A)y)<AT(X)+(1L-2) T (y)
forall x,ye[a,b] and 1€[0,1]. Wesaythat f isconcaveif (—f) isconvex.

Definition 2. A function f : [O,oo) — R issaid to be s— convex in the second sense if

f(Ax+(1=2)y)<A*f (x)+(1-2)f (y)
for all X,ye[0,0), 2€[0,1] and for some fixed s (0,1]. This class of s—convex function is

usually denoted by KZ.

It can be easily seen that for S=1, S— convexity reduces to ordinary convexity of functions defined
on [0,0).

The inequalities (1) have grown into a significant pillar for mathematical analysis and optimization,
besides, by looking into a variety of settings, these inequalities are found to have a number of uses. What
is more, for a specific choice of the function f, many inequalities with special means are obtainable.
Hermite Hadamard’s inequality (1), for example, is significant in its rich geometry and hence there are
many studies on it to demonstrate its new proofs, refinements, extensions and generalizations. You can

check ([1], [2], [6], [5] and [11]) and the references included there. In [1], Dragomir and Agarwal proved

the following results connected with the right part of (1).

Lemma 1. Let f:1°cR—>R be a differentiable mapping on 1°, a,bel” with a<b. If

f' e L[a,b], then the following equality holds:

f(a)+f(b 1
)2 ( )_b—aj f(x )dx——f (1-2t) f '(ta+ (1-t)b)at. (2)

Theorem 1. Let f:I°cR — R be a differentiable mapping on 1°, a,bel” with a<b. If

‘ f ‘ is convex on [a,b], then the following inequality holds:
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Theorem 2. Let f:I°cR —>R be a differentiable mapping on I°, a,bel® with a<b,

/(p-1)

f eL(a,b) and p>1. If the mapping ‘f"p is convex on [a,b], then the following inequality

holds:

p/(p-1) p/(p-1) (PP

b-a [[f@| " "+|f'®)

<
2(p+1)¥P 2

(4)

f(@)+ f(0)2-Ib-af f(x)dx

In [5], Kirmaci proved the following results connected with the left part of (1).

Lemma 2. Let f:1I°cR—>R be a differentiable mapping on 1°, a,bel® with a<b. If

f' eL(a,b), then we have

E%—if(ﬁds—f(iggj

a
= (b—a)[jjtf '(ta+(1—t)b)dt+Ll t-1)f '(ta+(1—t)b)dt]
Theorem 3. Let f:1°cR —>R be a differentiable mapping on 1°, a,bel® with a<b. If

‘ f" is convex on [a,b], then we have

b
L f(s)ds—f(—aerj
b-as 2

sb;Ta(|f'(a)|+|f'(b)|). (5)

The most well-known inequalities related to the integral mean of a convex function are the Hermite
Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities (see,

[7]-[16]). In [3], Fejer gave a weighted generalizatinon of the inequalities (1) as the following:

Theorem 4. f :[a,b] > R, be a convex function, then the inequality

22

holds, where w:[a,b] — R is nonnegative, integrable, and symmetric about x =252,

b 1 b f(a)+ f(b) ¢v
L WX < j fOow(x)dx < —=——= j w(Xx)dx (6)
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In [7], some inequalities of Hermite-Hadamard-Fejer type for differentiable convex mappings were

proved using the following lemma.

Lemma 3. Let f:1°cR—>R be a differentiable mapping on 1°, a,bel® with a<b, and

w:[a,b] = [0,0) be a differentiable mapping. If f < L[a,b], then the following equality holds:

w jb w(x)dx — jb f ()w(x)dx = @ jol p(t) f (ta+(1-t)b)dt (7)

foreach t<[0,1], where

p(t) = f w(as + (1—s)b)ds — j; w(as + (1 s)b)ds.

In [17], some inequalities on Generalized some Inequalities for Convex Functions were proved using

the following lemma.

Lemma4. Let f:1°cR — R be adifferentiable mappingon 1°, a,bel® with a<b and let

g:[ab]>R.If f,gel[ab], thenforall xe[a,b], the following identity holds:

.[Pl(x,t) f'(t)dt (8)

=(1-2)f (x)_[g(s)ds+/1 f(a)jg(s)ds+ f (b)jg(s)ds —jg(s)f (s)ds

where

t

(1—1)Jg(s)ds+ﬂjg(s)ds ,ast<x

a

Pl(x,t):=

(1-2)

o —

t
g(s)ds+/1j'g(s)ds ,X<t<h.

for 1€[0,1].

In this article, using functions whose derivatives absolute values are S-convex, we obtained new
inequalities of Hermite-Hadamard-Fejer type. The results presented here would provide extensions of

those given in earlier works.
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2. Main Results

Using this Lemma 4 we can obtain the following general integral inequalities:

Theorem 5. Let f:1I°cR—>R be a differentiable mapping on 1°, a,bel® with a<b

and let g:[a,b] >R be continuous on [a,b]. If ‘f‘ is s— convex on [a,b], then, for all

e[a,b], the following inequalities hold:

(1-2)f (x)fg(s)ds—jg(s)f(s)ds (9)

w{ f (a)i g(s)ds+ f (b)i g(s)ds}

{ b—a)"*~(b- x)5+l[b—a(s+2)+ x+sx]}
(s+1)(s+2)

||g||[a x],00
~ (b-ay

{(1 |f @)

(1—2,)|f'(b)|(xs_j; ;

{(b— x)5+2—(b—a)s+1[a+b+as—(s+2)x}}
(s+1)(s+2)

Alf (b)|$3+2)ﬂ+

9] )“2
Ty = /1)|f()| +

_l_

2|t (a)|

{(b—a)s+2+(x—a)m[a—b(s+2)+ x+sx]}

-2t @) (s+1)(s+2)

+

A1 )|T)2)+

x—a)’ 2+(b—a)s+1[a+b+bs—(s+2)x:ﬂ

i|f,(b)|{ (s+1)(s+2)
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(b—a)° (s+1)(s+2)

b_ S+2_ b— s+1 b— )
||g||[a,b],wﬂ(lmf,(a)'{( ) (b5 [o-a(s+2)rxrsd

(x-a)™*
S+2
{(b— x)s+2—(b—a)s+l[a+b+as—(s+2)x}}

(s+1)(s+2)

(L-2)|f' (b)) +

+

2|t (a)

—X
s+1)(s+2 S+2 "

Af '(b)|((x_—a))}{(1—/1)| f ’(a)|(b—)

{(b—a)5+2+(x—a)s+l[a—b(s+2)+ x+sx}}

-2t @) (5+1)(5+2)

_|_

s+2

. —X
Aol

)(5+2)
{(x—a)s+2+(b—a)s+1[a+b+bs—(s+2)x]}ﬂ

2|t (0)

(s+1)(s+2)

where 1€[0,1] and ||g||[a =S € [a,b]sup|g(s)|.
Proof. We take absolute of equation (8). Using bounded of the mapping g and the s — convexity of

‘f",we find that

1] =[a-2f00f} sweu-J s @du+2] @] gtu)du+ 1) g(e)c

SI:|PZ(x,t)||f'(t)|dt

[ (-] a@a]+ 2| gau

Pt It
b-a b-a

S L A P
b—a

jf((l—z)‘jb‘g(u)du‘m‘j:g(u)duD —

<[/ (@D lowdu [ [g)du) f'<%a+£b)‘dt+

jf((l—z)j;|g(u)|du+,1L‘|g(u)|du) f'(%a+£b)‘dtdt
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< 0. [ A=)t -2) + A(x~ t)][(

9],y ]; [A=A)0~1) + At~ x)][(

ol
(b-a)’

,1|f’(a)|jx(x—t)(b—t)5dt+/1|f'(b)|j: (x—t)(t—a)Sdt}

-t @|f (t—a)(b—t)sdt+(1—/1)|f'(b)| [ t-a)dt+

||g||xb s+1
(b[ 1) [(1 A)|F (a)|j (b—t)"*dt+(1-A)|f’ (b)” (b—t)(t—a)*dt
+/1|f’(a)|jx (t—x)(b—t)sdt+/1|f'(b)|_[x (t—x)(t—a)sdt}
Since;
X s 1 s+2 s+1
[ t-a)b-1) dtzm{(b—a) —(b—x) [b—a(s+2)+x+sx]}
jx(t—a)s+ldt=(x i
a S+2
X s 1 5+2 s+1
[ (x=)-1) dt:(s+1) S+2){(b—x) ~(b-a)"[a+b+as—(s+2)x]]
. ) B . ~ (X_a)s+2
J. -nt-a) = i) (s+2)

s+2
[ b-tydt= (b-x)
X S+2

[[-t)-aydt=

b—a)s+2+(x—a)s+l[a—b(s+2)+x+sx]}

1
(s+1)(s+2) {(

R G
j (t—x)(b—t)*dt = BT

1

jx (t—x)(t—a)*dt G (52)

{(x—a)s+2+(b —a)s+1[a+b+bs —(s+ 2)x]}

then we obtain that
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||| ”g”[a x],00
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{(1 M|f'@a )|

s+2

(b-a)
(l—/1)|f'(b)|_—;+

/1|f(a)| b—x)"*~(b-a) [a+b+as—(s+2)x]}+

s+1)(s+2){(
Al (b)|%}

9l )“2
ooy | & M|t (@ )|

a-2)|t (b)|ﬁ{(b—a)s+2+(x—a)s+1[a—b(s+2)+x+sx]}+
2|t @) s+l)(s) 2) "
A ) S+11( ){( )S+2+(b—a)s+1[a+b+bs—(s+2)x]}}

_”g“[a,x],oo[ |f’(a)| {(1_,1){(b_a)5+2_(b_x)5+1|:b—a(s+2)+X+SX]}+

(b-a)* | (s+1)(s+2)

i{(b— x)“z—(b—a)5+1[a+b+as—(s+2)x]}}+

' (0)|(x—a)™

s(+ 2 ) {(l_l) +$}] "

(9l [| f'@|(b-x) {(1— A)+ i} +

(b—-a)® S+2 s+1
f(b) S+2 s+l
%{a—ﬂ){(b—a) +(x-a) [a—b(s+2)+x+sx:|}+

l{(x_a)Her(b_a)s+1[a+b+bs—(s+2)X]}H

){(b—a)s+2—(b - x)s+l[b—a(s +2)+ X+ sx]} +
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- <b—a>|s|?ﬂ[ﬁf<5+z>[|f'<a>|{{<b—a>”—<b—xf”[b—a<s+z>+x+sx]}—

Z{[(b— X)"(2b+-a(s+2)++x+sx)—(b- a)5+1[2a+ as—(s+ 2)xﬂ}} +
| i '(b)|(x—a)s+2{s +1—}ts}]+

9,61
(s+2)(s+1)(b—-a)°

| f’(b)|{{(b—a)s+2+(x—a)s+1[a—b S+2)+ x+sx]}—

f'(a)|(b —x)"{s +1—/15}} +

,1{(x—a)”1(—2a+b(s+2) sx)+(b-a)""[2a+bs - s+2)x]}}}

- (b—a)!?![ﬂ;(s +2) U f '(a)|{{(b‘a)s+2‘(b— X)"[b-a(s+2)+x+sx]}-

ﬂ.{[(b X)S”(Zb a(s+2)+x+sx)—(b- +l[2a+as—(s+2)xﬂ}}+

| £ ®)|(x—a) *{s+1- s} |+| | F @] (b—x)"*{s+1- s} +
[FOf{(o-a)""+ (x-a)"[a-b(s+2)+ x+x]} -
A{(x-a)"(-2a+b(s+2) -0 + (b-a) “[2a-+bs ~(s+2)x]}

Hence, this completes the proof. o

Remark 1. Under the same assumptions of Theorem 5 with s =1; then the following identity holds:

@ 2) T ()2 g(u)du = g(u) f (u)du-+ 2] f (a);g(u)du+ f (b); g(u)du]

19y (1, )
_m{ f (a)‘[x—a j((l—ﬂ)(Bb—a—2x)+}t(3b—2a—x))
+ (@[ (2- )b -x)° +|f (b)) (2- 2)(x—a)’ +
|£(0)| (0 x)* ((1-2)(b—3a+2x)+ A(2b—3a+x))}

which is proved by Erden and Sarikaya in [8]
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Corollary 1. Let A =1 in Theorem 5.Then we have

(1-2)f (x)j' g(s)ds—j g(s)f (s)ds

w{ f (a)I g(s)ds+ f (b)i g(s)ds}

N8hsy..
" b-ay

f'(b )|—a)]+

s+1)(s+2)

{ b—x)s+2—(b—a)s+l[a+b+as—(s+2)x]}
(s+1)(s+2)

f'(a)

+

|f (a )|—)+

s+1)(s+2)

x—a) "+ (b-a)"[a+b+bs—(s+2)x]}
(s+1)(s+2)

f’(b)|{

||g|| a,b],0 ' s+2 s+1
:(b_a)s(s[;i)(“z)“f(a)|{2(b—x) —(b-a) [a+b+as—(s+2)x]}+

|1 ®){2(x-a) "+ (b-a)" [a+bbs—(s+2)x]}]

Remark 2. Under the same assumptions of Remark1 with A =1; then the following identity holds:
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‘f(a)jg(s)ds+ f(b)[ g(s)ds—[ g(s)f (s)ds

<||g||[a,x],@[|f'<a>|<x—a>2<3b—2a—x>+|f'(b)|<x—a>3}

~(b-a) 6

+||g||[x,b],{|f'<a>|<b—x>3+|f'<b>|<b—x>2<2b—~°»a+x>]

(b-a) 6

< !?ﬂ[ib];) {| f' (a)|[(x—a)2(3b—2a_ X)+(b— X)S}

+{ ' (0)][ (6-x)’(20-3a+x)+(x-a)' |
which is proved by Tseng et. al in [11].
Corollary 2. Let A =0 in Theorem 5.Then we have

(1-2)f (x)j g(s)ds—j g(s)f(s)ds
w{ f (a)'xf g(s)ds+ f (b)_T g(s)ds}
oy,
~(b-a)y

| f '(b)|[()((_a)s+2 {(b—a)5+2+(x—a)5+1[a_b(s +2)+ X+ SX]} ”

(s+1)(s+2) " (s12)

f ,(a)|{{(b—a)s+z_(b - X)S+1[b—a(s+ 2)+ X+ xs]} (b- X)su}r

s+2) (s+1)(s+2)

ol
(b-a)*(s+1)(s+2)

| f '(b)|{(b ~a)""+(x—a) " [a-b(s+2) +x+sx]+ (s +1)(x~ a)”z}

{| f '(a)|{(b—a)s+2—(b— x)*"[b-a(s+2)+x+xs]+ (s +1)(b— X)s+2} +

79



80 On Generalized Some Inequalities for s Convex Functions

Remark 3. Under the same assumptions of remark1 with A =0 then the following identity holds:

(1-2)f (x)j' g(s)ds—jl g(s)f(s)ds

+/1[ f (a).xf g(s)ds+ f (b)j’. g(s)ds}

||g||[ab] |f ( )|[{ b a)3_(b—x)2[b—3a+2X]} (bx)s}

+
6 3

6

|f,(b)|[(x—3a)3+(ba)a(xa)z[a3b+2x]}

ol
6(b—a)

|f'(b)|[(b—a)3—(x—a)z[a—3b+2x]+2(x_a)3}}

{| f '(a)||:(b—a)3_(b— x)z[b—3a+2X]+2(b_X)3j|+

which is proved by Sarikaya and Erden in [8]
Remark 4. Let s=1, 0<a <1 and Xx=aa+(l—a)b in Theorem 5. Then we have

aa+(l-a)b

(1-2)f (aa+(l—a)b)i g(s)ds+Af(a) [ g(s)ds (10)

a

b

+f(b) J g(s)ds—j g(s)f(s)ds

aa+(l-a)b

2-2)(1-a)

Il -1 0
1 (a) (1—05)2[(1—/1)(20(+1)+/1(2+a)]J

+
6

/’L)oz3

0l -2 @2
o [(1—/1)(3—2a)+/1(3—a)]]

+|f () -

<Jol,..(b-2)
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X{|f,(a)| (1-a)[(1-2)(2a+1)+A(2+a)]+(2-2)a"

6

+|ff(b)|azUH)(s—2a>+z<s—a>]+<z—ﬂ>(1—a>3}

6
for A €[0,1], which is proved by Sarikaya and Erden in [8]

Remark 5. Under the same assumptions of remark4 with A =1; then the following identity holds:

aa+(l-a)b b b
f(a) [ a@E)ds+f(b) [ g(s)ds—[g(s)f(s)ds
a aa+(l-a)b a

<Jq] (ba)zl|f'(b)|(1—05)3+|f'(a)|(1—a)2(2+a)}
= 1¥l[a.za+(1-a)b].o

6

6

+||g||[ | (b_a)zpf'(a)|a3+|f'(b)|az(3_a)}
aa+(1-a)b bl

6

f'(a)l(l-a)(2+a)+a® |+ (b)| &®(3-a)+(1-a)’
<”g"[ayb],w(ba)z[| (a)|(1-a)'(2+a)+a 4]t (o) @ (3-a)+( >]}

which is proved by Tseng et. al in [11].

Remark 6. Let s=1g:[ab] >R besymmetricto 22 and =% inRemark 4. Then we have

the inequalities

a+b\"

(1-2)f (TJJ; g (s)ds+ﬂwz g(s)ds—j: g(s)f (s)ds

11)

<[gf

[a,a;b}w(b‘a)z(ﬂh'(a)|+%|f'(b)|j
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22—y, 4+ 1

ok (0-a) 1 @)+ 4 o))

ol (0=a) ([ @)+ (D))

8

which is "weighted trapezoid" inequality provided that ‘f‘ is convex on [a,b].
Theorem 6. Let f:1°cR—>R be a differentiable mapping on 1° and let f eL[a,b],
abel” with a<b, and let g:[a,b] >R be continuous on [a,b]. If ‘f"q is S convex on

[a,b], q>1 thenforall xe[a,b], the following inequalities hold: for A €[0,1]\{3}

(12)

(1-2)f (x)j' g(s)ds+/1[f (a)i g(s)ds+ f (b)jl g(s)ds}—j' g(s)f (s)ds

1
p

_ p+l 4 p+l
S[(1 )Pt =4

(p+l)(1—2ﬂ/) ] ”g”[a,b]’w(b—a)%[(x_a)l)*l+(b_x)p+1}

s+1

{If’<a>|“+lf'<b>|"y

and for A =1

@ J g(s)ds+%[f(a) [o(eds+1(b)] 9<S>dSH 9(s)f (s)ds

<||g||[a,b],w<b—a>q[

2

f’(a)|q+| f (b)|q]q[(x_a)p+l n (b— X)Wl}p
s+1

=

where 2+1=1 and |g| =se[ab]sup|g(s)|.

N
Proof. We take absolute value of (12). Using Hélder’s inequality and the s convexity of ‘f (t)‘ ,
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we find that

(1-2)f (x)j. g(u)du+ﬂ,{f (a)JX- g(u)du+ f (b)j- g(u)du}—i g(u)f (u)ds

1 1

@ f (t)|thJq

p

sT|Pﬂ (xt)| (1)) dt < [jl|Pi (x,t)|pdt}

a

1

P b
dt+j

b \?
duJ

(1—/1)j g(u)du +/1j g(u)du

(1—/1)j g(u)du +ﬂj. g(u)du

_ (||g||[‘;x]m j [(1-2)t-a)+A(x—t)]dt

1
p

ol | [(l—ﬁ)(b—t)+/‘t(t—x)]pdt]

x(b_a);[ f'<a>|::|1f'<b>T

Now, we make change of variable

du
(1-2)(t-a)+A(x—t)=u dt_l—Z}L
(13)
dv
(I-2)(b-t)+ Alt—-x) =V dt_22—1'

From (13), it follows that
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(1-2)f (x)j' g(s)ds+i[f (a)j' g(s)ds+ f (b)Jb' g(s)ds}—'tf g(s)f(s)ds

<

((l_/l)pﬂ. _/prJrl

(p+DE-22) ] 19l -2 4ol 0072

s+1

x(b_a){ f'(a)|q+|f'(b)|qr.

1
p

_ p+l _ g p+l
S((1 )P -4

(p+D(1-24) j ”g ”[a,b],oo{(x —-a)" +(b-x) p+1}

s+1

T @)+ o T
gt
we obtain the inequality (12).

N
For A =1, because of Lemma 1, and using Holder’s inequality and the convexity of ‘f (t)‘ , We

find that

f (ZX)EQ(S)dS%{f (a)i g(s)ds+ f (b)i g(s)ds}i g(s) 1 (s)ds
sz £ (1)]ct SU ; dtT@“'(t)PdtT

<2l -2+ (x0Tl L6000
X<ba)a{ f'<a>|::|1f'<b>‘*T_

Hence, the proof is completed. o

P, (x,t)

P, (x,t)

1
p

Remark 7. Under the same assumptions of Theorem 6 with s=1
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(1-A) f ()] g(s)ds+ﬂ[f (a)[ g(s)ds+ f (b) | g(s)ds}—'[ g(s)f (s)ds (14)
(1—1)‘”1—1“1 ’ Ve[ (v aypt . p+1%
S[(p+l)(l—2/1)j(b a) | (x—a)"*+(b—x)""]
£ () +|f () '
{' ] '}ngn[a,b],w
and for A =5
1:(X)'t|{g(s,)ds+i f(a)'|x'g(s)ds+f(b)ig(s)ds —j‘g(s)f(s)ds
2 a 2 a X a
I IR A0 i A W—
<7 ]2 |2| | {(x—a) +(b—X) }
which is proved by Sarikaya and Erden in [8]
Corollary 3.  Under the same assumptions of Theorem 6 with 4 =1
[f (a)[ g(s)ds+ f (b) g(s)ds}—'[ g(s)f (s)ds (15)

1

1Y , . »
S((ml)j||g||[a»b],w(b‘a)”[(x—a) +(b—x)""]

1
p

s+1

{|f’(a)|q+|f'(b)|qr

Remark 8. Under the same assumptions of Theorem 6 with A =1 and s=1; then the following

inequality holds:
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X b b
%(a)jg@ﬁb+f(b)jg@ﬂb—jg(ﬁf(ﬁds

N0l 0-2)
(p+1)°

{|f'(a)|q+|f'(b)|‘*r

[(x=a)" + (b-x)""]’

2

which is proved by Tseng et. al in [11].
Corollary 4. Under the same assumptions of Theorem 6 with A =0 then the following inequality
holds:

‘f (x)'[g(s)ds—_[g(s)f(s)ds (16)

1
p

() ol (o2 -0

(p+1)
xpf@Wwawr

s+1

Remark 9. Under the same assumptions of Theorem 6 with 4 =0 and S=1; then the following

inequality holds:

‘f (X)J. Q(S)dS—J- g(s)f(s)ds

< (b—a.)a [(X_a)pﬂ +(b_x)p+1J%
(p+1)°

I

1

{|f'(a)|q+|f'(b)|q]q

X

T2 ol
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which is "weighted Ostrowski" inequality provided that ‘f"q is s convexon [a,b].

Remark 10. Let s=1 O0<a <1 and x=aa+(@—a)b in Theorem 6. Then the following

inequality holds:

aa+(l-a)b

(1-2) f (aa+(1—a)b)i g(s)ds+Af(a) j g(s)ds (17)

a

b

+f(b) j g(s)ds—jg(s)f(s)ds

aa+(l-a)b

Q-2 -ara) b1 ol
S( (p+D-27) j b ar]

£ (a) 4| (o) |
x[| @A) }ngn[a,b],w

for 1€[0,1] which is proved by Sarikaya and Erden in [8]

Remark 11. If we take A =1 in (17), we get

aa+(l-a)b b b
f(a) [ a@s)ds+f(b) [ g(s)ds—[g(s)f(s)ds
a aa+(l-a)b a

1
p

< (l-a)" +a™ {

f'(a)|q+|f'<b)|q]q||g||[ ]
a,bl,0

2
which is proved by Tseng et. al in [11].

Remark 12. If we take g:[ab]—>R be symmetric to 2 and o =1 in Remark 10. Then we
have the inequality

(1-2)f (aTerﬁ g (s)ds+lwz g(s)ds—i g(s)f (s)ds

a

(18)
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1
q |a

- (1= 2)P = 2P %(b—a)2 |f'(a)|q+|f'(b)| ||g||
| (p+D@E-24) 2 2 [ab]

which is proved by Sarikaya and Erden in [8]
Remark 13. weighted trapezoid If we take A =1 in (18), we obtain

b b b
‘W! g(s)ds—! g(s)f (s)ds

_o=ay [ @[T o) |

T 2p+D)’ 2

[9las.-

which is proved by Tseng et. al in [11].
Remark 14. If we take 4 =0 in (18), we get

‘f(%mjig(s)ds_zg@)f(sws

_ (b=a)’ | [ @ +[f'(o)f “”g”
2(p+1)° 2 ke

which is "weighted midpoint" inequality provided that ‘f"q is s-convex on [a,b] and f"eL(a,b)

where p>1.
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