Counter Examples for Lemma 3.18 Of [1]

Masomeh Aghamohammadi
Department of Mathmatics, College of basic science, Karaj Branch, Islamic azad University, Alborz, Iran, P.O.Box 3-3-31485.
Mostafa Ahmadinejad
Institute of Higher Education of A.B.A, Valiasr avenue, Abiyek, Ghazvin, Iran. P. O. Box 83533-34416.

Abstract

In proof of Lemma 3.18 in [1] acclaim that, at least one of the eigenvalues of Grammian matrix G_{11} has distance $\frac{\eta}{(n-1)}$ from $\{0,1\}$. In this paper, we show by two counter examples that this claim is incorrect and we say state correct it with proof it.

Keywords: Administrative data source, Administrative data documentation, Administrative data quality, Data source ontology, Statistical data production

1. Introduction

In this paper we let, H is a seprable Hilbert space with dimension d, and n be a countable index set that $(n, d)=1$.

Definition 1.1. [2] A family of vectors $F=\left\{f_{i}\right\} j \in J$ is a frame for a Hilbert space H if there are constants $0<A \leq B<\infty$ such that for all $f \in H$

$$
A\|f\|^{2} \leq \sum_{j \in J}\left|<f, f_{j}>\right|^{2} \leq B\|f\|^{2}, \forall f \in H .
$$

We call A and B the frame bounds. If we can choose $A=B$ then F is a A-tight frame and if $A=B=1$, it is a parseval frame. If all the frame vectors have the same norm, it is an equal-norm frame. We call A and B the frame bounds. If $F=\left\{f_{i}\right\} j \in J$ possesses an upper frame bound, but not necessarily a lower bound, we call it is a Bessel sequence with Bessel bound A. The analysis operator of the frame is the map

Corresponding author: Masomeh Aghamohammadi, Department of Mathmatics, College of basic science, Karaj Branch, Islamic azad University, Alborz, Iran, P.O.Box 3-3-31485. E-mail: Miriam.aqamohamadi@gmail.com.

$$
\begin{gathered}
V: H \rightarrow l^{2}(J) \\
V(f):=\left\{\left\langle f, f_{j}\right\rangle\right\}_{j \in J} .
\end{gathered}
$$

Its adjoint is the synthesis operator which maps $a \in l^{2}(J)$

$$
\begin{gathered}
V^{*}: l^{2}(J) \rightarrow H \\
V^{*}(f):=\sum_{j \in J} a_{j} f_{j} .
\end{gathered}
$$

The frame operator is the positive, self-adjoint invertible operator

$$
S: H \rightarrow H, \quad S f=V^{*} V f=\sum_{j \in J}<f, f_{j}>f_{j} .
$$

The Grammian is the matrix G with entries $G_{j, k}=\left\langle f_{j}, f_{k}\right\rangle$ so that $G_{j, k}=\left(V V^{*}\right)_{k, j}, k, j \in\{1, \ldots, n\}$.
Definition 1.2. A frame $\left\{f_{j}\right\}_{j=1}^{n}$ for a d-dimensional real or complex Hilbert space H is ϵ - nearly equal-norm with constant c if

$$
(1-\epsilon) c \leq\left\|f_{j}\right\| \leq(1+\epsilon) c, \quad \forall j \in\{1,2, \ldots, n\} .
$$

Definition 1.3. [1] Let $n, d \in N$ be relatively prime

$$
\begin{equation*}
\eta=\underset{\min _{n_{1}<d}<n}{ }\left|\frac{d}{n}-\frac{d_{1}}{n_{1}}\right| . \tag{1.1}
\end{equation*}
$$

Example 1.4. Let $d=3, n=5$ then

$$
\begin{gathered}
d_{1}=\{1,2\}, n_{1}=\{1,2,3,4\}, \\
\frac{d_{1}}{n_{1}}=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 2, \frac{2}{3}\right\}, \\
\eta=\min \left\{\left|\frac{d}{n}-\frac{d_{1}}{n_{1}}\right|\right\}=\min \left\{\left|\frac{3}{5}-\frac{d_{1}}{n_{1}}\right|\right\}=\min \left\{\frac{2}{5}, \frac{1}{10}, \frac{4}{1}, \frac{7}{3}, \frac{7}{6}\right\}=\frac{1}{3} .
\end{gathered}
$$

2. Counter Examples

At least one of the eigenvalues of Grammian matrix G_{11} has distance $\frac{\eta}{n-1}$ from $\{0,1\}$, by the definition of distance between a point and setis equivalent to this acclaim, at least for one eigenvalue (λ) of eigenvalues related Grammian matrix $G_{11}, \lambda=\frac{\eta}{n-1}$ or $1-\lambda=\frac{\eta}{n-1}$.

Initial Example Counter 2. 1. We let $\operatorname{dim} H=2$ and number ofvector frame $n=3$. Let frame $F=\left\{F_{1}, F_{2}, F_{3}\right\}$ in Hilbert space H, that

$$
F_{1}=\left(\sqrt{\frac{2}{3}}, 0\right), \quad F_{2}=\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{2}}\right), \quad F_{3}=\left(\frac{-1}{\sqrt{6}}, \frac{-1}{\sqrt{2}}\right)
$$

We first show that F is Parseval frame, Since for arbitrary vector $F=\left\{F_{1}, F_{2}\right\}$ in H,
$\left|<f, F_{1}>\left.\right|^{2}=\frac{2}{3} F_{1}^{2},\left|<f, F_{2}>\right|^{2}=\frac{1}{6} f_{1}^{2}+\frac{1}{2} f_{2}^{2}-\frac{1}{\sqrt{2} . \sqrt{6}} f_{1} f_{2}\right.$,
and
$\left|<f, F_{3}>\right|^{2}=\frac{1}{6} f_{1}^{2}+\frac{1}{2} f_{2}^{2}+\frac{1}{\sqrt{2} \cdot \sqrt{6}} f_{1} f_{2}$,
thus

$$
\sum_{n=1}^{3}\left|<f, \quad F_{n}>\right|^{2}=f_{1}^{2}+f_{2}^{2}=\|f\|^{2}
$$

Thus F is a Parseval frame.
We procure for $n=3$ and $d=2, \eta$ at method under

$$
d_{1}=\{1\}, \quad N_{1}=\{1,2\},
$$

thus

$$
\eta=\min \left\{\frac{1}{3}, \frac{1}{6}\right\}=\frac{1}{6}
$$

Therefore $\frac{\eta}{n-1}=\frac{1}{12}$.
Then constitute the Grammian matrix G relative to Parseval frame F,

$$
G=\left[\begin{array}{ccc}
\frac{2}{3} & \frac{-1}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{2}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{-1}{3} & \frac{2}{3}
\end{array}\right]
$$

And we form the corresponding blocks in the Grammian so that, G_{11} is a Hermitian matrix and $G_{12}^{*}=G_{21}$

$$
G=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]
$$

We only can consider two states for block G_{11}
(1) $G_{11}=\left[\frac{2}{3}\right]$ is block 1×1, thus $\lambda\left(G_{11}\right)=\frac{2}{3}$, it is clear that $1-\frac{2}{3}=\frac{1}{3}$ and $\frac{2}{3}$ are apposite to $\frac{1}{12}$.
(2) G_{11} is block 2×2 at form under

$$
G_{11}=\left[\begin{array}{cc}
\frac{2}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{2}{3}
\end{array}\right],
$$

It is clear that, eigenvalues of G_{11} are equal to $1, \frac{1}{3}$. If $\lambda\left(G_{11}\right)=1$ it is clear that $1,1-1$ are apposite to $\frac{1}{12}$, if $\lambda\left(G_{11}\right)=\frac{1}{3}$ it is clear that $1-\frac{1}{3}=\frac{2}{3}$ and $\frac{1}{3}$ are opposite to $\frac{1}{12}$.

Thus in two above states, we observed that none of eigenvalues relative to G_{11} not have distance $\frac{\eta}{n-1}=\frac{1}{12}$ of set $\{0,1\}$.

Initial Example counter 2. 2. We let $\operatorname{dim} H=3$ and number of vector frame $n=4$. Let frame $F=\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ in Hilbert space H, that

$$
\begin{aligned}
F_{1} & =\left(\frac{-1}{2}, \frac{1}{2}, \frac{1}{2}\right), \quad F_{2}=\left(\frac{1}{2}, \frac{-1}{2}, \frac{1}{2}\right), \\
F_{3} & =\left(\frac{1}{2}, \frac{1}{2}, \frac{-1}{2}\right), \quad F_{4}=\left(\frac{-1}{2}, \frac{-1}{2}, \frac{-1}{2}\right)
\end{aligned}
$$

It is clear that F is a Parseval frame for Hilbert space H.
We procure for $n=4$ and $d=3, \eta=\frac{1}{12}$ and $\frac{\eta}{n-1}=\frac{1}{36}$. Then constitute the Grammian matrix G relative to Parseval frame F,

$$
G=\left[\begin{array}{cccc}
\frac{3}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{3}{4} & \frac{-1}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{-1}{4} & \frac{3}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{-1}{4} & \frac{-1}{4} & \frac{3}{4}
\end{array}\right]
$$

Similar to before, we form the corresponding blocks in the Grammian G so that G_{11} is a Hermitian matrix, we only can consider three states for block G_{11}
(1) $G_{11}=\left[\frac{3}{4}\right]$ is block 1×1 thus $\lambda\left(G_{11}\right)=\frac{3}{4}$. It is clear that $\frac{3}{4}$ and $1-\frac{3}{4}=\frac{1}{4}$ are opposite to $\frac{1}{36}$.
(2) G_{11} is block 2×2 at form under

$$
G_{11}=\left[\begin{array}{cc}
\frac{3}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{3}{4}
\end{array}\right]
$$

It is clear that, eigenvalues of G_{11} are equal to $1, \frac{1}{2}$. If $\lambda\left(G_{11}\right)=1$ it is clear that $1,1-1$ are opposite to $\frac{1}{36}$. If $\lambda\left(G_{11}\right)=\frac{1}{2}$ it is clear that $1-\frac{1}{2}=\frac{1}{2}$ and $\frac{1}{2}$ are opposite to $\frac{1}{36}$.
(3) G_{11} is block 3×3 at form under

$$
G_{11}=\left[\begin{array}{ccc}
\frac{3}{4} & \frac{-1}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{3}{4} & \frac{-1}{4} \\
\frac{-1}{4} & \frac{-1}{4} & \frac{3}{4}
\end{array}\right]
$$

It is clear that, eigenvalues of G_{11} are equal to $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=\frac{1}{4}$. If $\lambda\left(G_{11}\right)=1$ it is clear that 1, 1-1 are opposite to $\frac{\eta}{n-1}=\frac{1}{36}$. If $\lambda\left(G_{11}\right)=\frac{1}{4}$ it is clear that $1-\frac{1}{4}=\frac{3}{4}$ and $\frac{1}{4}$ are opposite to $\frac{\eta}{n-1}=\frac{1}{36}$.

Thus in three above states, we observed that none of eigenvalues relative to G_{11} not have distance $\frac{\eta}{n-1}=\frac{1}{36}$ of set $\{0,1\}$.

3. Correction Proof Of Lemma 3.18

In this section, we show by the using of information Lemma 3.18 in [1] that, at least one of the eigenvalues of Grammian matrix G_{11} has distance $\frac{\eta}{(n-1)}$ from $\{0,1\}$ or equivalently, at least for one eigenvalue (λ) of eigenvalues related Grammian matrix $G_{11}, \lambda>\frac{\eta}{n-1}$ or $1-\lambda>\frac{\eta}{n-1}$.

Lemma 3.1. Let $n \geq 2, \eta$ as defined above, and let $F=\left\{f_{j}\right\}_{j=1}^{n}$ be a Parseval frame for a d-dimensional Hilbert space, then the variance of the random variable $W: C \mapsto W\left(F^{(C)}\right)$ on the torus T^{n} equipped with the uniform probability measure σ_{n} is bounded below by

$$
\frac{16 \eta}{(n-1)^{7}}(U(F))^{2} \leq \int_{T^{n}}\left(W\left(F^{(C)}\right)\right)^{2} d \sigma_{n}
$$

Corollary 3.2. Let $n \geq 2, \eta$ as defined above, and let $F=\left\{f_{j}\right\}_{j=1}^{n}$ be a Parseval frame for a d-dimensional Hilbert space, if G be Grammian matrix related to F that blocked at form

$$
G=\left[\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right]
$$

Then at least one of the eigenvalues of Grammian matrix G_{11} has distance $\frac{\eta}{(n-1)}$ from $\{0,1\}$ or equivalently, at least for one eigenvalue (λ) of eigenvalues related Grammian matrix $G_{11}, \lambda>\frac{\eta}{n-1}$ or $1-\lambda>\frac{\eta}{n-1}$.

Proof. Since Gis aGrammian matrix therefore G is a positive definite matrix [3], thus $G_{11} \geq 0$. Since G is a Grammian matrix therefore G is a Hermitian matrix thus G_{11} is a Hermitian matrix. We now arrange eigenvalues of G and G_{11}

$$
0 \leq \lambda_{\min }(G) \leq \lambda_{\min }\left(G_{11}\right) \leq \cdots \leq \lambda_{\max }\left(G_{11}\right) \leq \lambda_{\max }(G)
$$

and since G_{11} is a Hermitian matrix, thus

$$
0 \leq \lambda_{\min }\left(G_{11}\right) x^{*} x \leq x^{*} G_{11} x \leq \lambda_{\max }\left(G_{11}\right) x^{*} x \leq 1 x^{*} x,
$$

therefore

$$
x^{*} I x-x^{*} G_{11} x \geq 0
$$

Thus $G_{11} \leq I$ and conseqently $\lambda\left(G_{11}\right) \in[0,1]$. If $(n, d)=1$ and the vectors are sufficiently near equal- norm, then the diagonal entries of G_{11} are close to $\frac{d}{n}$ and summing them does not give an integer. Therefore, not all eigenvalues are 0 or 1 or equivalently there is at least one eigenvalue (λ) related to G_{11} in $(0,1)$.Since in proof of lemma 3. 18 in [1] argue on function $\lambda(1-\lambda)$ and the function $\lambda \rightarrow \lambda(1-\lambda)$ is bounded below by $\lambda \rightarrow \frac{\lambda}{2}$ on $\left[0, \frac{1}{2}\right]$ and by $\lambda \rightarrow \frac{1}{2}-\frac{\lambda}{2}$ on $\left[\frac{1}{2}, 1\right]$. Thus without lessen of totality, we let $\lambda \in\left[0, \frac{1}{2}\right]$. Since $n \geq 2$ it is clear that $\frac{\eta}{n-1}<\frac{1}{2}$. Now consider 2 state for λ and $\frac{\eta}{n-1}$,

$$
\begin{equation*}
\lambda>\frac{\eta}{n-1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda<\frac{\eta}{n-1} \Rightarrow 1-\lambda>\frac{\eta}{n-1} \tag{3.2}
\end{equation*}
$$

By relation (3.1) and (3. 2), we gives

$$
\min \{\lambda, 1-\lambda\}>\frac{\eta}{n-1}
$$

References

[1]. B. G. Bodmann and P. G. Casazza, The road to equal- norm parseval frame, J. Funct. Anal., 258 (2010) 397-420.
[2]. O. Christinsen, Frames and Bases, An Introductory Course, Birkhauser, Boston, 2008.
[3]. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, London, 1985.
[4]. W. Rudin, Principles of Mathematical Analysis, United States, America, 1976.

