

On *q*-Baskakov-Durrmeyer-Stancu Operators in Approximation Theory

Prerna Maheshwari Sharma

Department of Mathematics; SRM Univ., Ghaziabad (Uttar Pradesh), India.

Sangeeta Garg

Research Scholar; Mewar University, Chittorgarh (Rajasthan), India.

Abstract

This paper is the extension of Aral-Gupta [1] by the use of Stancu type generalization of q-Baskakov-Durrmeyer operators. We establish some important relations for these operators which provide an approximation process in the polynomial weighted space of continuous functions on $[0,\infty)$. The rate of convergence and weighted approximation properties are also obtained.

Keywords: q-Baskakov-Durrmeyer operators, Stancu type generalization, Rate of Convergence, Modulus of continuity, Weighted approximation.

1. Introduction

In the approximation theory, q-calculus makes our research very interesting. In the year 1987, first q-analogue of classical Bernstein polynomials was given by A. Lupas [4]. The most important q-analogue of the Bernstein polynomials was introduced by Phillips [8] in 1997. After that many researchers worked in this direction and proposed many types of q-operators and motivated their various properties related to special functions, number theory and convergence behaviour. Gupta et al. [5] established the generating functions of some q-basis functions. In approximation theory, the convergence is very important. Therefore, in this context we mention some of the results for convergence of q-discrete operators due to [1], [3] etc.

Discrete operators are not possible to approximate the integrable functions. V. Gupta [3] introduced

Corresponding author: Sangeeta Garg, Research Scholar; Mewar University, Chittorgarh (Rajasthan), India. E-mail: sangeetavipin@rediffmail.com.

an important q-analogue of the Bernstein Durrmeyer operators based on q-Beta function of first kind in 2008. Later, in 2010, based on q-Beta function of second kind, Aral and Gupta [1] introduced q-Baskakov-Durrmeyer operators.

The main purpose of this paper is to obtain a local approximation theorem and a rate of convergence of the new operators as well as their weighted approximation properties. The processes turn out to have a better order of approximation in a certain subspace of continuous functions. Therefore for $f \in C[0,\infty)$, q > 0 and $n \in \mathbb{N}$, Aral-Gupta introduced q-Baskakov operators such as

$$B_{n,q}(f;x) = \sum_{\nu=0}^{\infty} {n+\nu-1 \brack \nu} q^{\frac{\nu(\nu-1)}{2}} \frac{x^{\nu}}{(1+x)_q^{n+\nu}} f\left(\frac{[\nu]_q}{q^{\nu-1}[n]_q}\right)$$

$$= \sum_{\nu=0}^{\infty} p_{n,\nu}^q(x) f\left(\frac{[\nu]_q}{q^{\nu-1}[n]_q}\right). \tag{1}$$

Next to it, by taking $q \in (0,1)$, they constructed the linear positive operators

$$D_n^q(f,x) = [n-1]_q \sum_{v=0}^{\infty} p_{n,v}^q(x) \int_0^{\infty/A} p_{n,v}^q(t) f(t) d_q t,$$
 (2)

where

$$p_{n,v}^{q}(x) = \begin{bmatrix} n+v-1 \\ v \end{bmatrix}_{q} q^{v^{2}/2} \frac{x^{v}}{(1+x)_{q}^{n+v}}, \quad x \in [0,\infty)$$
 (3)

for every real valued continuous and bounded function f on $[0,\infty)$. Also it can be observed that in case q=1, the above operators reduce to the original Baskakov-Durrmeyer operators discussed by Sahai et al. [9], P. Maheshwari [6].

Motivated by the recent studies, now we propose the Stancu type generalization [10] of the q-Baskakov-Durrmeyer operators. Actually the Stancu variant is based on two parameters α and β satisfying $0 \le \alpha \le \beta$. It generalizes the original operators. So for 0 < q < 1 and $x \in [0, \infty)$, we propose q-Baskakov-Durrmeyer-Stancu operators

$$D_{n,\alpha,\beta}^{q}(f;x) = [n-1]_{q} \sum_{\nu=0}^{\infty} p_{n,\nu}^{q}(x) \int_{0}^{\infty/A} p_{n,\nu}^{q}(t) f\left(\frac{[n]_{q}t + \alpha}{[n]_{q} + \beta}\right) d_{q}t, \tag{4}$$

for every $f \in [0, \infty)$ and $p_{n,v}^q(t)$ defined in (3). If q = 1, the above operators reduce to original Baskakov-Durrmeyer-Stancu operators of which some properties are discussed by Maheshwari-Sharma [7]. Obviously for $\alpha = \beta = 0$ operators (4) reduce to q-Baskakov-Durrmeyer operators (2).

Before starting our work, it is necessary to recall the concepts of q-calculus, which can be studied in the book written by Aral et al. [2].

2. Moment Estimation and Auxiliary Results

In this section, we estimate certain basic results such as moments and some important lemmas.

Lemma 1. [1] For $B_{n,q}(t^m;x), m = 0,1,2$, we have

$$B_{n,q}(1;x) = 1;$$

 $B_{n,q}(t;x) = x;$
 $B_{n,q}(t^2;x) = x^2 + \frac{x}{[n]_q} \left(1 + \frac{x}{q}\right)$

Lemma 2. [1] For $n \in N$ and $q \in (0,1)$, we have

$$\begin{split} D_n^q(1;x) &= 1, \quad n \ge 1; \\ D_n^q(t;x) &= \left(1 + \frac{[2]_q}{q^2[n-2]_q}\right) x + \frac{1}{q[n-2]_q} = \frac{[n]_q x + q}{q^2[n-2]_q}, \quad n > 2; \\ D_n^q(t^2;x) &= \left(1 + \frac{[3]_q}{q^3[n-3]_q} + \frac{[2]_q}{q^2[n-2]_q} + \frac{q[2]_q[3]_q + [n]_q}{q^6[n-2]_q[n-3]_q}\right) x^2 \\ &+ \frac{[n]_q + q(1 + [2]_q)[n]_q}{q^5[n-2]_q[n-3]_q} x + \frac{[2]_q}{q^3[n-2]_q[n-3]_q}, \quad n > 3. \end{split}$$

Lemma 3. The following equalities hold for $n \in N$ and $0 \le \alpha \le \beta$ as

$$\begin{split} D^q_{n,\alpha,\beta}(1;x) &= 1; \\ D^q_{n,\alpha,\beta}(t;x) &= \frac{[n]_q^2 x + q[n]_q}{q^2([n]_q + \beta)[n-2]_q} + \frac{\alpha}{[n]_q + \beta}; \\ D^q_{n,\alpha,\beta}(t^2;x) &= \left(\frac{[n]_q}{[n]_q + \beta}\right)^2 \left[\frac{[n]_q(q[n]_q + 1)}{q^6[n-2]_q[n-3]_q} x^2 + \frac{[n]_q\{1 + q(1 + [2]_q)\}}{q^5[n-2]_q[n-3]_q} x \right. \\ &\quad + \frac{[2]_q}{q^3[n-2]_q[n-3]_q} \right] + \frac{2\alpha[n]_q}{([n]_q + \beta)^2} \cdot \frac{[n]_q x + q}{q^2[n-2]_q} + \left(\frac{\alpha}{[n]_q + \beta}\right)^2. \end{split}$$

Proof. The operators $D_{n,\alpha,\beta}^q(f(t);x)$ are well defined on the function $1,t,t^2$. Therefore for each $n \in \mathbb{N}$ and $x \in [0,\infty)$, obviously $D_{n,\alpha,\beta}^q(1;x) = 1$. Now

$$\begin{split} D_{n,\alpha,\beta}^{q}(t;x) &= [n-1]_{q} \sum_{\nu=0}^{\infty} p_{n,\nu}^{q}(x) \int_{0}^{\infty/A} p_{n,\nu}^{q}(t) \left(\frac{[n]_{q}t + \alpha}{[n]_{q} + \beta} \right) d_{q}t \\ &= \left(\frac{[n]_{q}}{[n]_{q} + \beta} \right) D_{n}^{q}(t;x) + \left(\frac{\alpha}{[n]_{q} + \beta} \right) D_{n}^{q}(1;x) \\ &= \frac{[n]_{q}^{2}x + q[n]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} + \frac{\alpha}{[n]_{q} + \beta}, \quad n > 2 \end{split}$$

and

$$\begin{split} &D_{n,\alpha,\beta}^{q}(t^{2};x) \\ &= [n-1]_{q} \sum_{\nu=0}^{\infty} p_{n,\nu}^{q}(x) \int_{0}^{\infty/A} p_{n,\nu}^{q}(t) \left(\frac{[n]_{q}t + \alpha}{[n]_{q} + \beta} \right)^{2} d_{q}t \\ &= \left(\frac{[n]_{q}}{[n]_{q} + \beta} \right)^{2} D_{n}^{q}(t^{2};x) + \frac{2[n]_{q}\alpha}{([n]_{q} + \beta)^{2}} D_{n}^{q}(t;x) + \left(\frac{\alpha}{[n]_{q} + \beta} \right)^{2} \\ &= \left(\frac{[n]_{q}}{[n]_{q} + \beta} \right)^{2} \left[\left(1 + \frac{[3]_{q}}{q^{3}[n-3]_{q}} + \frac{[2]_{q}}{q^{2}[n-2]_{q}} + \frac{q[2]_{q}[3]_{q} + [n]_{q}}{q^{6}[n-2]_{q}[n-3]_{q}} \right) x^{2} \\ &+ \frac{[n]_{q} + q(1 + [2]_{q})[n]_{q}}{q^{5}[n-2]_{q}[n-3]_{q}} x + \frac{[2]_{q}}{q^{3}[n-2]_{q}[n-3]_{q}} \right] + \frac{2[n]_{q}\alpha}{([n]_{q} + \beta)^{2}} \frac{[n]_{q}x + q}{q^{2}[n-2]_{q}} \\ &+ \left(\frac{\alpha}{[n]_{q} + \beta} \right)^{2} \end{split}$$

$$= \left(\frac{[n]_q}{[n]_q + \beta}\right)^2 \left[\frac{[n]_q (q[n]_q + 1)}{q^6 [n - 2]_q [n - 3]_q} x^2 + \frac{[n]_q \{1 + q(1 + [2]_q)\}}{q^5 [n - 2]_q [n - 3]_q} x \right.$$

$$+ \frac{[2]_q}{q^3 [n - 2]_q [n - 3]_q} \left. + \frac{2\alpha [n]_q}{([n]_q + \beta)^2} \cdot \frac{[n]_q x + q}{q^2 [n - 2]_q} + \left(\frac{\alpha}{[n]_q + \beta}\right)^2, \quad n > 3.$$

Remark 1. If we put q = 1 and $\alpha = \beta = 0$, we get

$$D_n(t;x) = \frac{1+nx}{n-2}, \quad n > 2;$$
$$D_n(t-x;x) = \frac{1+2x}{n-2}, \quad n > 2;$$

$$D_n(t^2;x) = \frac{(n^2 + n)x^2 + 4nx + 2}{(n-2)(n-3)}, \quad n > 3;$$

$$D_n((t-x)^2;x) = \frac{2[(n+3)x^2 + (n+3)x + 1]}{(n-2)(n-3)}, \quad n > 3.$$

Lemma 4. The central moments of q-Baskakov-Durrmeyer-Stancu operators for $q \in (0,1)$ and $x \in [0,\infty)$ is

$$A_{n,\alpha,\beta,m}^{q}(x) = D_{n,\alpha,\beta}^{q}((t-x)^{m};x)$$

$$= [n-1]_{q} \sum_{v=0}^{\infty} p_{n,v}^{q}(x) \int_{0}^{\infty} p_{n,v}^{q}(t) \left(\frac{[n]_{q}t + \alpha}{[n]_{q} + \beta} - x \right)^{m} dt,$$

then we have

$$A_{n,\alpha,\beta,1}^{q}(x) = D_{n,\alpha,\beta}^{q}(t-x;x) = \frac{[n]_{q}([2]_{q}x+q) + q^{2}(\alpha-\beta x)[n-2]_{q}}{q^{2}([n]_{q}+\beta)[n-2]_{q}}$$

$$\begin{split} A_{n,\alpha,\beta,2}^{q}(x) &= D_{n,\alpha,\beta}^{q}((t-x)^{2};x) \\ &= \left[\frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} - \frac{2[n]_{q}^{2}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} + 1 \right] x^{2} \\ &+ \left[\frac{[n]_{q}^{3} + q(1 + [2]_{q})[n]_{q}^{3}}{q^{5}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} + \frac{2\alpha[n]_{q}^{2}}{q^{2}([n]_{q} + \beta)^{2}[n-2]_{q}} - \frac{2\alpha}{[n]_{q} + \beta} \right] x + \frac{[2]_{q}[n]_{q}^{2}}{q^{3}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \\ &+ \frac{2\alpha[n]_{q}}{q([n]_{q} + \beta)^{2}[n-2]_{q}} + \left(\frac{\alpha}{[n]_{q} + \beta} \right)^{2}. \end{split}$$

Proof. Using Lemma 3, we have

$$\begin{split} A_{n,\alpha,\beta,1}^q(x) &= D_{n,\alpha,\beta}^q(t-x;x) = D_{n,\alpha,\beta}^q(t;x) - xD_{n,\alpha,\beta}^q(1;x) \\ &= \frac{[n]_q^2 x + q[n]_q}{q^2([n]_q + \beta)[n-2]_q} + \frac{\alpha}{[n]_q + \beta} - x \\ &= \frac{[n]_q([2]_q x + q) + q^2(\alpha - \beta x)[n-2]_q}{q^2([n]_q + \beta)[n-2]_q} \end{split}$$

and

$$\begin{split} A_{n,\alpha,\beta,2}^q(x) &= D_{n,\alpha,\beta}^q((t-x)^2;x) \\ &= D_{n,\alpha,\beta}^q(t^2;x) - 2xD_{n,\alpha,\beta}^q(t;x) + x^2D_{n,\alpha,\beta}^q(1;x) \\ &= \left[\frac{q[n]_q^4 + [n]_q^3}{q^6([n]_q + \beta)^2[n-2]_q[n-3]_q} - \frac{2[n]_q^2}{q^2([n]_q + \beta)[n-2]_q} + 1 \right] x^2 \\ &+ \left[\frac{[n]_q^3 + q(1 + [2]_q)[n]_q^3}{q^5([n]_q + \beta)^2[n-2]_q[n-3]_q} + \frac{2\alpha[n]_q^2}{q^2([n]_q + \beta)^2[n-2]_q} - \frac{2\alpha}{[n]_q} \right] x + \frac{[2]_q[n]_q^2}{q([n]_q + \beta)[n-2]_q} \\ &+ \frac{2\alpha[n]_q}{q([n]_q + \beta)^2[n-2]_q} + \left(\frac{\alpha}{[n]_q + \beta} \right)^2. \end{split}$$

Lemma 5. For a given number n > 3 and $q \in (0,1)$, we have

$$D_{n,\alpha,\beta}^{q}((t-x)^{2};x) \leq \frac{7(1+\beta)[n]_{q}^{2}}{q^{6}([n]_{q}+\beta)[n-2]_{q}} \left(\varphi^{2}(x) + \frac{1}{([n]_{q}+\beta)[n-3]_{q}}\right),$$

where $\varphi^2(x) = x(1+x)$, for all $x[0,\infty)$.

Proof. From Lemma 4, we have

$$\begin{split} &D_{n,\alpha,\beta}^{q}((t-x)^{2};x) \\ &= \begin{bmatrix} q[n]_{q}^{4} + [n]_{q}^{3} \\ q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q} \\ + \frac{[n]_{q}^{3} + q(1+[2]_{q})[n]_{q}^{3}}{q^{5}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} + \frac{2\alpha[n]_{q}^{2}}{q^{2}([n]_{q} + \beta)^{2}[n-2]_{q}} \\ &+ \frac{[n]_{q}^{3} + q(1+[2]_{q})[n]_{q}^{3}}{q^{5}([n]_{q} + \beta)^{2}[n-2]_{q}} - \frac{2\alpha}{[n]_{q} + \beta} \end{bmatrix} x + \frac{2\alpha[n]_{q}^{2}}{q^{3}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \\ &+ \frac{2\alpha[n]_{q}}{q([n]_{q} + \beta)^{2}[n-2]_{q}} + \left(\frac{\alpha}{[n]_{q} + \beta}\right)^{2} \\ &= \left[\frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} - \frac{2[n]_{q}^{2}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} + 1 \right] (x^{2} + x) \\ &+ \left[\frac{[n]_{q}^{3} + q(1+[2]_{q})[n]_{q}^{3}}{q^{5}([n]_{q} + \beta)^{2}[n-2]_{q}} - \frac{2\alpha}{[n]_{q} + \beta} \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} + \frac{2\alpha[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)[n-2]_{q}} - 1 \right] x + \frac{[2]_{q}[n]_{q}^{2}}{q^{3}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \\ &+ \frac{2\alpha[n]_{q}}{q([n]_{q} + \beta)^{2}[n-2]_{q}} + \left(\frac{\alpha}{[n]_{q} + \beta}\right)^{2} \\ &\leq \frac{[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} [q[n]_{q} + 1 - 2q^{4}[n-3]_{q} + q^{6}([n]_{q} + \beta)]\phi^{2} \\ &+ \frac{[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \left[\phi^{3} + q^{4} + 2q^{5}\beta + q^{6}\beta^{2}\right] \\ &\leq \frac{7(1+\beta)[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)^{2}[n-2]} \left[\phi^{2} + \frac{1}{([n]_{q} + \beta)[n-3]_{q}}\right] \\ &= \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \right] \\ &\leq \frac{7(1+\beta)[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)[n-2]_{q}} \left[\phi^{2} + \frac{1}{([n]_{q} + \beta)[n-3]_{q}}\right] \\ &= \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \right] \\ &\leq \frac{7(1+\beta)[n]_{q}^{2}}{q^{6}([n]_{q} + \beta)[n-2]_{q}} \left[\phi^{2} + \frac{1}{([n]_{q} + \beta)[n-3]_{q}}\right] \\ &= \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \right] \\ &\leq \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)^{2}[n-2]_{q}[n-3]_{q}} \left[\phi^{2} + \frac{1}{([n]_{q} + \beta)[n-3]_{q}}\right] \\ &\leq \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)[n-2]_{q}} \left[\phi^{2} + \frac{1}{([n]_{q} + \beta)[n-3]_{q}}\right] \\ &\leq \frac{q[n]_{q}^{4} + [n]_{q}^{3}}{q^{6}([n]_{q} + \beta)[n-2]_{q}}$$

Definition 1. (Peetre's K-functional) Let us consider the space $C_B[0,\infty)$ of all the continuous and bounded functions f that is $f \in C_B[0,\infty)$ and endowed with the norm $\|f\| = \{ \|f(x)\| : x \in [0,\infty) \}$, then the K-functional

$$K_2(f,\delta) = \inf_{g \in W^2} \{ || f - g || + \delta || g'' || \},$$

where $\delta>0$ and $W^2=\{g\in C_B[0,\infty):g',g''\in C_B[0,\infty)\}$. Also \exists an absolute constant C>0 such that $K_2(f,\delta)\leq C\omega_2(f,\sqrt{\delta})$, where

$$\omega_2(f,\sqrt{\delta}) = \sup_{0 < h < \sqrt{\delta}} \sup_{x \in [0,\infty)} |f(x+2h) - 2f(x+h) + f(x)|$$

is the second order modulus of smoothness of $f \in C_{\mathbb{R}}[0,\infty)$.

Definition 2. (Rate of convergence) Let $B_{x^2}[0,\infty)$ be the set of all functions $f\in[0,\infty)$ satisfying the condition $|f(x)| \le M_f(1+x^2)$, M_f is a constant depending on f. We denote the subspace of all continuos functions by $C_{x^2}[0,\infty)$ belonging to $B_{x^2}[0,\infty)$. Again, we suppose $C_{x^2}^*[0,\infty)$ be the subspace of all the functions $f\in C_{x^2}[0,\infty)$, for which $\lim_{x\to\infty}\frac{f(x)}{1+x^2}$ is finite. The norm on $C_{x^2}^*[0,\infty)$ is defined as $||f||_{x^2}=\sup_{x\to\infty}\frac{|f(x)|}{1+x^2}$. We denote the usual modulus of continuity of f on the closed interval f and f or f on the closed interval f and f or f on the closed interval f and f or f or f on the closed interval f or f or

$$\omega_a(f,\delta) = \sup_{|t-x| \le \delta} \sup_{x,t \in [0,a]} |f(t) - f(x)|.$$

We know that for a function $f \in C_{x^2}[0,\infty)$, the modulus of continuity $\omega_a(f,\delta) \to 0$.

3. Direct Estimates

In this section, we establish some direct and local approximation theorems connected with the operators $D_{n,\alpha,\beta}^q$ in simultaneous approximation.

Local Approximation Theorem

Theorem 1. For $q \in (0,1)$ and $n \ge 4$, we have

$$|D_{n,\alpha,\beta}^{q}(f;x) - f(x)| \le C\omega_{2}(f,\delta_{n}(x)) + \omega \left(f, \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}}\right)$$

where for all $x \in [0, \infty)$ and $f \in C_B[0, \infty)$, C is a positive constant; and

$$\delta_n^2(x) = A_{n,\alpha,\beta,2}^q(x) + (A_{n,\alpha,\beta,1}^q(x))^2.$$

Proof. We define the auxiliary operators $\overline{D}_{n,\alpha,\beta}^q$ for $x \in [0,\infty)$ as

$$\overline{D}_{n,\alpha,\beta}^{q}(f;x) = D_{n,\alpha,\beta}^{q}(f;x) + f(x) - f\left(x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}}\right).$$
(5)

From Lemma 3, the operators $\overline{D}_{n,\alpha,\beta}^q$ is observed to be linear and preserving the linear functions as

$$\overline{D}_{n,\alpha,\beta}^{q}(t-x;x) = 0.$$
 (6)

By Taylor's expansion of a function $g \in W^2$ as

$$g(t) = g(x) + (t - x)g'(x) + \int_{x}^{t} (t - w)g''(w)dw, x, t \in [0, \infty)$$

and (6), we obtain

$$\overline{D}_{n,\alpha,\beta}^{q}(g;x) = g(x) + \overline{D}_{n,\alpha,\beta}^{q} \left(\int_{x}^{t} (t - w)g''(w)dw; x \right)$$

Hence from (5), one get

$$|\overline{D}_{n,\alpha,\beta}^{q}(g;x)-g(x)|$$

$$\leq \left| D_{n,\alpha,\beta}^{q} \left(\int_{x}^{t} (t-w) g''(w) dw; x \right) \right| + \left| \int_{x}^{x+\frac{\{[n]_{q}^{2}-q^{2}([n]_{q}+\beta)[n-2]_{q}\}x+q[n]_{q}+\alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q}+\beta)[n-2]_{q}}} \right|$$

$$\left(x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} - w\right)g''(w)dw$$

$$\leq D_{n,\alpha,\beta}^{q} \left(\int_{x}^{t} |t - w|| g''(w)| dw, x\right) + \int_{x}^{x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}}}$$

$$\left|x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} - w\right| |g''(w)| dw$$

$$\leq \left[D_{n,\alpha,\beta}^{q} ((t - x)^{2}, x) + \left(D_{n,\alpha,\beta}^{q} (t - x; x)\right)^{2}\right] ||g''|| = \delta_{n}^{2}(x) ||g''||. \tag{7}$$

Now from (5), we have

$$|\overline{D}_{n,\alpha,\beta}^{q}(f;x)| \le |D_{n,\alpha,\beta}^{q}(f;x)| + 2||f|| \le ||f|| D_{n,\alpha,\beta}^{q}(1;x) + 2||f|| \le 3||f||.$$
 (8)

Therefore from (5), (7) and (8),

$$\begin{split} &|D_{n,\alpha,\beta}^{q}(f;x) - f(x)| \\ &= |\overline{D}_{n,\alpha,\beta}^{q}(f - g,x) - (f - g)(x)| + |\overline{D}_{n,\alpha,\beta}^{q}(g,x) - g(x)| \\ &+ \left| f\left(x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n - 2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n - 2]_{q}}{q^{2}([n]_{q} + \beta)[n - 2]_{q}}\right) - f(x) \right| \\ &\leq 4 ||f - g|| + \delta_{n}^{2}(x) ||g''|| \\ &+ \left| f(x + \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n - 2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n - 2]_{q}}{q^{2}([n]_{q} + \beta)[n - 2]_{q}}\right) - f(x) \right|. \end{split}$$

Taking infimum overall $g \in W^2$ on RHS and then using Peetre's K-functional defined in the previous section, we have

$$\begin{split} |D_{n,\alpha,\beta}^{q}(f;x) - f(x)| &\leq CK_{2}(f,\delta_{n}^{2}(x)) + \omega \left(f, \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} \right) \\ &= C\omega_{2}(f,\delta_{n}(x)) + \omega \left(f, \frac{\{[n]_{q}^{2} - q^{2}([n]_{q} + \beta)[n-2]_{q}\}x + q[n]_{q} + \alpha q^{2}[n-2]_{q}}{q^{2}([n]_{q} + \beta)[n-2]_{q}} \right). \end{split}$$

Hence the proof of theorem is completed.

Theorem 2. Let $f \in C_{x^2}[0,\infty), q=q_n \in (0,1)$ such that $q_n \to 1$ as $n \to \infty$ and $\omega_{a+1}(f,\delta)$ be its modulus of continuity on the finite interval $[0,a+1] \subset [0,\infty)$, where a>0. Then for every n>3, we have

$$||D_{n,\alpha,\beta}^{q}(f;x)-f(x)||_{C[0,a]} \leq \frac{R[n]_{q}}{q^{6}([n]_{q}+\beta)[n-3]_{q}} + 2\omega_{a+1}\left[f,\sqrt{\frac{[n]_{q}R}{q^{6}([n]_{q}+\beta)[n-3]_{q}}}\right],$$

where $R = 42(1+\beta)M_f(1+a^2)(1+a+a^2)$.

Proof. For $x \in [0, a]$ and t > a + 1, as t - x > 1, we have

$$|f(t) - f(x)| \le M_f(2 + x^2 + t^2) \le M_f(2 + 3x^2 + (t - x)^2) \le 6M_f(1 + a^2)(t - x)^2.$$
 (9)

For $x \in [0, a]$ and $t \le a + 1$, we have

$$|f(t) - f(x)| \le \omega_{a+1}(f, |t - x|) \le \left(1 + \frac{|t - x|}{\delta}\right) \omega_{a+1}(f, \delta), \quad \delta > 0$$
 (10)

From (9) and (10), we have

$$|f(t) - f(x)| \le 6M_f (1 + a^2)(t - x)^2 + \left(1 + \frac{|t - x|}{\delta}\right) \omega_{a+1}(f, \delta)$$
 (11)

for $x \in [0, a]$ and $t \ge 0$. Hence

$$\begin{split} |D_{n,\alpha,\beta}^{q}(f;x) - f(x)| &\leq D_{n,\alpha,\beta}^{q}(|f(t) - f(x)|;x) \\ &\leq 6M_{f}(1 + a^{2})D_{n,\alpha,\beta}^{q}((t - x)^{2};x) \\ &+ \omega_{a+1}(f,\delta) \left[1 + \frac{1}{\delta}D_{n,\alpha,\beta}^{q}((t - x)^{2};x)^{1/2}\right]. \end{split}$$

Using Schwarz inequality and Lemma 4,

$$\begin{split} &|D_{n,\alpha,\beta}^{q}(f;x)-f(x)|\\ &\leq \frac{42(1+\beta)M_{f}(1+a^{2})[n]_{q}^{2}}{q^{6}([n]_{q}+\beta)[n-2]_{q}} \left(\phi^{2}(x)+\frac{1}{([n]_{q}+\beta)[n-3]_{q}}\right)\\ &+\omega_{a+1}(f,\delta)\left[1+\frac{1}{\delta}\sqrt{\frac{7[n]_{q}^{2}(1+\beta)}{q^{6}([n]_{q}+\beta)[n-2]_{q}}}\left(\phi^{2}(x)+\frac{1}{([n]_{q}+\beta)[n-3]_{q}}\right)\right]\\ &\leq \frac{R[n]_{q}}{q^{6}([n]_{q}+\beta)[n-3]_{q}}+\omega_{a+1}(f,\delta)\left[1+\frac{1}{\delta}\sqrt{\frac{R[n]_{q}}{q^{6}([n]_{q}+\beta)[n-3]_{q}}}\right]. \end{split}$$

Taking $\delta = \sqrt{\frac{R[n]_q}{q^6([n]_q + \beta)[n-3]_q}}$, we obtain the assertion of our theorem.

Corollary 1. If $f \in Lip_M \theta$ on [0, a+1], then for n > 3

$$||D_{n,\alpha,\beta}^{q}(f;x)-f(x)||_{C[0,a]} \le (1+2M)\sqrt{\frac{R[n]_{q}}{q^{6}([n]_{q}+\beta)[n-3]_{q}}}.$$

Proof. For n to be sufficiently large, we have

$$\frac{R[n]_q}{q^6([n]_q + \beta)[n-3]_q} \le \sqrt{\frac{R[n]_q}{q^6([n]_q + \beta)[n-3]_q}}$$

Since $\lim_{n\to\infty} [n-3]_q = \infty$, by $f \in Lip_M \theta$ we obtain the required corollary.

Weighted approximation theorem After that we discuss about the weighted approximation theorem, which holds true on $[0,\infty)$.

Theorem 3. Let $q \equiv q_n$ satisfies $0 < q_n < 1$ and $q_n \to 1$ as $n \to \infty$. Then for each $f \in C^*_{r^2}[0,\infty)$, we have

$$\lim_{n\to\infty} \|D_{n,\alpha,\beta}^{q}(f;x) - f(x)\|_{x^{2}} = 0$$

Proof: Using the theorem in [3], the following three conditions are sufficient to varify

$$\lim_{n \to \infty} \|D_{n,\alpha,\beta}^{q}(t^{k},x) - x^{k}\|_{x^{2}} = 0, k = 0,1,2.$$
(12)

as $D_n^{q_n}(1,x)=1$, the first condition k=0 of (12) is fulfilled. Therefore by Lemma 3, for n>2 we have

$$\begin{split} \|D_{n,\alpha,\beta}^{q_{n}}(t;x)-x\|_{x^{2}} &= \sup_{x\in[0,\infty)} \frac{|D_{n,\alpha,\beta}^{q_{n}}(t;x)-x|}{1+x^{2}} \\ &\leq \frac{[n]_{q_{n}}[2]_{q_{n}}-q_{n}^{2}\beta[n-2]_{q_{n}}}{q_{n}^{2}([n]_{q_{n}}+\beta)[n-2]_{q_{n}}} \sup_{x\in[0,\infty)} \frac{x}{1+x^{2}} \\ &+ \frac{[n]_{q_{n}}+q_{n}\alpha[n-2]_{q_{n}}}{q_{n}([n]_{q_{n}}+\beta)[n-2]_{q_{n}}} \sup_{x\in[0,\infty)} \frac{1}{1+x^{2}} \\ &\leq \frac{[n]_{q_{n}}[2]_{q_{n}}-q_{n}^{2}\beta[n-2]_{q_{n}}}{q_{n}^{2}([n]_{q_{n}}+\beta)[n-2]_{q_{n}}} + \frac{[n]_{q_{n}}+q_{n}\alpha[n-2]_{q_{n}}}{q_{n}([n]_{q_{n}}+\beta)[n-2]_{q_{n}}}, \end{split}$$

which implies that

$$\lim_{n\to\infty} \|D_{n,\alpha,\beta}^{q_n}(t;x) - x\|_{x^2} = 0$$

Thus the second condition of (12) is also varified i.e. for k = 1 as $n \to \infty$. Similarly for n > 3, we can take

$$\begin{split} & \left\| D_{n,\alpha,\beta}^{q_n}(t^2;x) - x^2 \right\|_{x^2} \\ &= \left(\frac{q_n[n]_{q_n}^4 + [n]_{q_n}^3}{q_n^6([n]_{q_n} + \beta)^2[n-2]_{q_n}[n-3]_{q_n}} - 1 \right) \sup_{x \in [0,\infty)} \frac{x^2}{1+x^2} \\ &+ \left(\frac{[n]_{q_n}^3 \left\{ 1 + q_n(1 + [2]_{q_n}) + 2\alpha q_n^{\ 3}[n]_{q_n}^2[n-3]_{q_n} \right\}}{q_n^5([n]_{q_n} + \beta)^2[n-2]_{q_n}[n-3]_{q_n}} \right) \sup_{x \in [0,\infty)} \frac{x}{1+x^2} \\ &+ \left(\frac{[2]_{q_n}[n]_{q_n}^2 + 2q_n^{\ 2}\alpha[n]_{q_n}[n-3]_{q_n}}{q_n^3([n]_{q_n} + \beta)^2[n-2]_{q_n}[n-3]_{q_n}} + \left(\frac{\alpha}{[n]_{q_n} + \beta} \right)^2 \right) \sup_{x \in [0,\infty)} \frac{1}{1+x^2}, \end{split}$$

which also implies that

$$\lim_{n\to\infty} \|D_{n,\alpha,\beta}^{q_n}(t^2;x) - x\|_{x^2} = 0.$$

Hence the proof of theorem is completed.

Theorem 4. If $q \equiv q_n$ satisfies $0 < q_n < 1$ and $q_n \to 1$ as $n \to \infty$, for each $f \in C_{x^2}[0,\infty)$ and $\theta > 0$, we have

$$\lim_{n \to \infty} \sup_{x \in [0, \infty)} \frac{|D_{n, \alpha, \beta}^{q_n}(f; x) - f(x)|}{(1 + x^2)^{1 + \theta}} = 0.$$

Proof: For fixed $x_0 > 0$,

$$\begin{split} \sup_{x \in [0,\infty)} & \frac{|D_{n,\alpha,\beta}^{q_n}(f;x) - f(x)|}{(1+x^2)^{1+\theta}} \\ \leq \sup_{x \leq x_0} & \frac{|D_{n,\alpha,\beta}^{q_n}(f;x) - f(x)|}{(1+x^2)^{1+\theta}} + \sup_{x > x_0} & \frac{|D_{n,\alpha,\beta}^{q_n}(f;x) - f(x)|}{(1+x^2)^{1+\theta}} \\ = & \|D_{n,\alpha,\beta}^{q_n}(f) - f\|_{C[0,x_0]} + \|f\|_{x_2} \sup_{x > x_0} & \frac{|D_{n,\alpha,\beta}^{q_n}(1+t^2;x)|}{(1+x^2)^{1+\theta}} + \sup_{x > x_0} & \frac{|f(x)|}{(1+x^2)^{1+\theta}}. \end{split}$$

First term of the above inequality tends to zero by Theorem 2. From Lemma 2 for a fixed $x_0 > 0$ it can easily be seen that $n \to \infty$ implies

$$\sup_{x>x_0} \frac{|D_{n,\alpha,\beta}^{q_n}(1+t^2;x)|}{(1+x^2)^{1+\theta}} \to 0.$$

Therefore we can choose $x_0 > 0$ too large to be $\sup_{x > x_0} \frac{|f(x)|}{(1+x^2)^{1+\theta}}$ small enough. Thus the proof of theorem is done.

References

- [1]. Aral A. and Gupta V., On the Durrmeyer type modification of the *q*-Baskakov operators, Nonlinear Analysis 72 (2010), 1171-1180.
- [2]. Aral A., Gupta V. and Agarwal R.P., Applications of *q*-Calculus in Operator Theory, Springer Science and Business Media, 09-May-2013, Mathematics- 262 pages
- [3]. Gupta V., Some approximation properties on *q*-Durrmeyer operators, Applied Math Comp. 197 (1) (2008), 172-178.

On *q*-Baskakov-Durrmeyer-Stancu Operators in Approximation Theory

[4]. Gupta V., Kim T. and Lee S. H., -analogue of a new sequence of linear positive operators, J. of Ineq. and Appl.

2012, 2012-:144.

774

[5]. Lupas A., A q-analogue of the Bernstein operator, In Seminar on Numerical and Statistical Calculus

(Cluj-Napoca, 1987), 85-92. Preprint, 87-9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).

[6]. Maheshwari P., Direct theorems for modified Baskakov operators in L_p -space, Demonst. Mathematica, Vol.

XLL, No (3)(2009), 533-565.

[7]. Maheshwari P. and Sharma D., Approximation by q-Baskakov-Beta-Stancu operators, Rend. Circ. Mat. Palermo

(2012), 61:297-305 (Springer).

[8]. Phillips G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511-518.

[9]. Sahai A. and Prasad G., On simultaneous approximation by modified Lupas operators, J. Approx. Theory 45

(1985), 122-185.

[10]. Stancu D. D., Approximation of functions by means of new generalized Bernstein operators, Calcolo 20 (1983),

211-229.

Published: Volume 2016, Issue 12 / December 25, 2016