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Abstract

This paper is the extension of Aral-Gupta [1] by the use of Stancu type generalization of ¢
-Baskakov-Durrmeyer operators. We establish some important relations for these operators which

provide an approximation process in the polynomial weighted space of continuous functions on
[0,00). The rate of convergence and weighted approximation properties are also obtained.
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1. Introduction

In the approximation theory, ¢ -calculus makes our research very interesting. In the year 1987, first
g -analogue of classical Bernstein polynomials was given by A. Lupas [4]. The most important g
-analogue of the Bernstein polynomials was introduced by Phillips [8] in 1997. After that many
researchers worked in this direction and proposed many types of ¢ -operators and motivated their various
properties related to special functions, number theory and convergence behaviour. Gupta et al. [5]
established the generating functions of some ¢ -basis functions. In approximation theory, the convergence
is very important. Therefore, in this context we mention some of the results for convergence of ¢ -discrete
operators due to [1], [3] etc.

Discrete operators are not possible to approximate the integrable functions. V. Gupta [3] introduced
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an important ¢ -analogue of the Bernstein Durrmeyer operators based on ¢ -Beta function of first kind in

2008. Later, in 2010, based on ¢ -Beta function of second kind, Aral and Gupta [1] introduced ¢

-Baskakov-Durrmeyer operators.
The main purpose of this paper is to obtain a local approximation theorem and a rate of convergence

of the new operators as well as their weighted approximation properties. The processes turn out to have a

better order of approximation in a certain subspace of continuous functions. Therefore for f € C[0, ),

q>0 and ne N, Aral-Gupta introduced ¢ -Baskakov operators such as

> 1| s v
Bn,q(f;x)=2{n+v }qz (1+xx)n+vf[ 22 J

v q'"'[n],
- (1)
- %
= Z P, (X)f H_q .
v=0 q [n]q
Next to it, by taking ¢ € (0,1), they constructed the linear positive operators
q © q /A q
DI(f.x)=[n=1], 3 pl, ()|~ pL(OF 0,1, )
v=0
where
n+v-1| ., x’
va(x): q N xE[0,00) (3)
’ \ . (I+x),

for every real valued continuous and bounded function f on [0,00). Also it can be observed that in

case g =1, the above operators reduce to the original Baskakov-Durrmeyer operators discussed by Sahai

et al. [9], P. Maheshwari [6].

Motivated by the recent studies, now we propose the Stancu type generalization [10] of the ¢

-Baskakov-Durrmeyer operators. Actually the Stancu variant is based on two parameters o and f

satisfying 0 <a < . It generalizes the original operators. So for 0<g<1 and xe[0,0), we

propose ¢ -Baskakov-Durrmeyer-Stancu operators
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q . _ _ > q /A q [n]qt+a
Dl (1) =[n-11,3 Pl () [ pr,,va)f(—[n]q+ ﬂquz, “)

for every f €[0,00) and p; (¢) defined in (3). If g=1, the above operators reduce to origional
Baskakov-Durrmeyer-Stancu operators of which some properties are discussed by Maheshwari-Sharma
[7]. Obviously for & = =0 operators (4) reduce to ¢ -Baskakov-Durrmeyer operators (2).

Before starting our work, it is necessary to recall the concepts of ¢ -calculus, which can be studied in

the book written by Aral et al. [2].

2. Moment Estimation and Auxiliary Results

In this section, we estimate certain basic results such as moments and some important lemmas.

Lemma 1. [1] For B, (t";x),m=0,1,2, we have

n,q

Bn’q (Lx)=1;
B, ,(t;x)=x;
X X
B, (%) =x" +—[1+—j
[n], q

Lemma 2. [1]For ne N and ¢ €(0,1), we have

Di(Lx)=1 nxl;
D!(t;x)=| 1+ 2[2]" X+ ! = [Zl]"x+q , n>2;
q’[n-2], gln-2], q’[n-2],
(3], [2], q2],[3], +[n], |,
3 + 2 + 6 X
g’ [n-3], q¢’[n-2], q'[n-2][n-3],
nly +q+[2])(n], [2],
¢’[n-21[n-3], ¢'[n-2][n-3],

D! (t*;x) :(1+

n>3.

Lemma 3. The following equalities hold for ne N and 0<a < f as
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Dj’aﬁ Lx)=1;
_ [nEx+gln), «
g’ ([n), +P)n-2], [n],+B
P G AR N R O I ORIEP I
n,a,ﬂ(t ,X)— 6 X
[n],+B )| ¢’[n—2],[n-3], q’[n—2],[n-3],

2], 2a(n], [n],x+q a )
+ + T3 + .
q3[n—2]q[n—3]j (n, +B) ¢’ln-2], ([n]ﬁﬂJ

Di‘z]a,ﬁ (tﬂ x)

Proof. The operators D), ,(f(¢);x) are well defined on the function 1, t,t*. Therefore for each

neN and xe[0,), obviously D, ,(l;x)=1. Now

[],
DY, ,(t:x)=[n- 1]Zp @ ()([Hﬂ]czqr

_[_In], 44 o a1
_([n]q +ﬂ]Dﬂ (t,x)+([n]q +ﬂ]Dﬂ (I;x)

[n],x+4[n], L@

=— , n>2
g ([n],+Pn=-2], [n],+p

and

D;’,a,ﬂ (£*;x)

=[n- 1]Zp o p, ()([[ ]]t ZJW

L 2Dq(tz;x)+ A paesx+ 2
[n],+B) " ([n], +B)’ [n], +ﬁ’

| ], 2 { [3], [2], q(2],[3], +[n], | ,

= —1— +— +— +— x
[n], + /5 q'[n=31, q’[n=-2], q'[n-2][n-3],

il +g(+2)0, 2, ] 2l [nx+g
q’[n-2],[n-3], (13["—2]q[ﬂ—3]qJ ([n], + )" q¢’[n-2],

— 2
[n], +
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_( I, 2 ], (glm), + D), L7, 1+q(+([2], )}
[n],+ 8 )| 4'In-2],[n-3], q’[n-2],[n-3],

[2], 2afn], [n],x+q a
3 + , n>3.
q[n—2]q[n—3]} ([n],+B) ¢*ln-2], ([ﬂ]ﬁﬁ}

Remark 1. If weput g=1 and a=£=0, we get

Dty = 5o,
n—2
1+2

D (t—x;x) = i x’ n>2;
n—2

D, (t*;x) = (n* +n)x* +4nx+2
(n=2)(n-3)
D,1((t—x)2;x) _ 2[(”+3)x2 +(n+3)x+1]
(n=2)(n-3)

, n>3;

, n>3.

Lemma 4. The central moments of ¢ -Baskakov-Durrmeyer-Stancu operators for ¢ € (0,1) and

x €[0,0) is

naﬂm(x) anﬂ((t x) X)

=n-1}, 3 21,0 pnv()[“ el x] d,

then we have

[n],(12],x+ @)+ ¢’ (a = px)[n-2],
q’([n], + B)n-2],

aﬁl(x) Dzaﬁ(t_ x)=
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Ag,wﬁﬂ (x)= Df:],a,/} (- x)z;x)

_ { glnl; +[n], 2[nT; l}cz
¢*((n, + A[n=21,[n-3], ¢ ((n], + Pn-2],
{ [n], +q(+[20)[n],  2aln],
¢*([n), + B [n=21,[n=3], ¢*(In, +B)'n-2],
2[n], 2 }H [2],[n];
q([n], + Pln=21, [+ | ¢ ([n],+p)In-2][n-3],

2aln], a )
q([n] + )’ [n- 2] [n],+8 )
Proof. Using Lemma 3, we have

A:,a,ﬂ,l (x)= D:l”aﬁ (t—x;x)= D:{’a’ﬂ (t;x)— xD;’,a’ﬂ (L x)
[n], x+q[n], a
=— + —Xx
g ([n],+Pn-2], [n],+p
_ [n],([2],x+q)+q*(a - fx)[n-2],
q*([n], + P)n-2],

and

Ar‘l],zx,ﬂ,Z(x) = Drllla ﬂ((t_X)2')C)
:anaﬂ(t ;x)=2xD,, ,(¢; x)+x2D3ﬂaﬂﬂ(1‘x)

i glnl; +(n%; g,
¢'(n), + An=2L[n=31, (], +Pln-2],
o h+q@e2)L 2ain)
¢* (), + A’ [n=2),[n =31, ¢*((n),+B)'n-2],
A, 2 [21,[n];
a0, + Bln=21, [, + 5" @0, + BPIn-2],In-3,

. 2aln), a )
o], + prln-2], \[nl,+f)

Lemma 5. For a given number n >3 and ¢ €(0,1), we have
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2 0+ PE [ 1
Dq —_ ; S ; 4 b
T Ty P) [¢ (x“an]qw)[n—ﬂj

where @”(x)=x(1+x), forall x[0,00).
Proof. From Lemma 4, we have

Dy, 5((t=x);)

{ gln; +[n]; 2y, H}Cz
¢°([n), + B [n=21,[n=3], ¢ ([n], +B)n-2],
[n], +q(+[20)[n),  2oln];

¢’ ([n), + B [n=21,[n=3], ¢*(In],+p)n-2],
2[n], 2 }H [2],[n];

q([nl, +An=2], [nl,+B | & (nl,+p)[n-2],n-3],

2aln], a YV
+ +
q([n), + B)’[n-2], ([n]q +ﬁj
3 gln], +[n], 2[n]; 2
=|— - - +1|(x"+x)
q ([n],+p)[n-2],[n-3], q ([n],+p)n-2],
. [n]] +q(1+[2])In]; .\ 2a(n]; ~
¢’ ([n], +B)'[n-21,[n-3], ¢’ (n],+p)'[n-2],
2[n], _ 2a gln], +[n1,
q([n), +Pn=2]1, [n,+8 ¢°(n],+p)'[n-2],[n-3],
2[n], [21,[n];
+— —l|x+— >
g ([n], + p)n-2], g ([n], +B)[n-2],[n-3],

2aln], a
+ +
4[], + AyIn—2], ([n]q +ﬂJ

[n][z, ar. 6 2
< 4 (], + B)in—21[n =31, [g[n], +1-2¢"[n=3],+q"([n], + B)l$
+ ), [ +a*+24° f+q° °]

' ([n), + B [n—2],[n-3],

7(1+ B)[n]; ) 1
<— o+
g*([n), + A)n-2], { (n], +ﬁ)[n—3]j
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Definition 1. (Peetre’s K -functional) Let us consider the space C,[0,00) of all the continuous
and bounded functions f that is feC,4[0,0) and endowed with the norm

| 7 1I=14 f(x)]: x €[0,00)}, thenthe K -functional
Kz(f,5)zggyyfz{||f—g||+5||g"||},

where §>0 and W’ ={geC,[0,0):g’,g"eC,[0,0)}. Also 3 an absolute constant C >0

such that K,(f,0)< Ca)z(f,\/g), where

0,(fNE)= sup_sup | f(x+2h)=2f(x+h)+ f(x)]|

0<h</8 xe[0,0)
is the second order modulus of smoothness of f € C,[0,0).
Definition 2. (Rate of convergence) Let B ,[0,0) be the set of all functions f €[0,0)
satisfying the condition | f(x)|< Mf(1+x2), M, is a constant depending on f. We denote the

subspace of all continuos functions by sz [0,00) belonging to B, [0,00). Again, we suppose

C::Z [0,00) be the subspace of all the functions f €C,[0,0), for which lim ﬁ(;) is finite. The

|/ ()l

X0 42 "

norm on C:z [0,00) is defined as || /|| .=sup We denote the usual modulus of continuity of

f onthe closed interval [0,a] for a >0, by

@,(f,0)=sup sup [f()=f(x)].

|t—x|<8 x,te€[0,a]

We know that for a function f"e C,[0,00), the modulus of continuity @,(f,5)— 0.

3. Direct Estimates

In this section, we establish some direct and local approximation theorems connected with the

q . .
operators D, , in simultaneous approximation.
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Local Approximation Theorem

Theorem 1. For ¢ €(0,1) and n>4, we have

DY, (f26) 0 < Co (1.5, + a{f, (Do, — g O, + =20, e gl g [ - 2, J

q*([n], + B)n-2],

where for all x €[0,00) and f € C,[0,0), C is a positive constant; and

5;«2 (x)= Aj,a,ﬁ,z (x)+ (A:z[,a,ﬁ,l (x))z.

Proof. We define the auxiliary operators Bz)a’ p for xe [0,00) as

B (Fi0) =Dl (fix) £~ f[H {[n]: = ¢*([n], + Bn—2],}x +qln], +aq’[n—2], J )

q*([n], + Pn-2],

From Lemma 3, the operators Bz,a’ P is observed to be linear and preserving the linear functions as

5Z,a’ﬂ(t -x;x)=0. (6)
By Taylor’s expansion of a function g e W? as
! ! "
()= g(¥)+(=x)g () + [ (1=w)g"(W)dw,x,1 [0,0)
and (6), we obtain

iy ey ! n

B0 =800+ B[ (6= g 01|
Hence from (5), one get

| Do s(g5%)—g(x)]

A B=g? (g P21y poralnlgrag® (2]

X+ 3
J A nlg+Pln-2ly
X

<|D!,, (J: (t— w)g"(w)dw;x) +
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{[n], =4’ ([n], + P)n-2] }x+qln], +aq’[n-2], y
X+ -w|g"(w)dw
q’([n], + P)n-2],

{0 (g A)n-2)g hreqlnlgrag® [n-2]g

<D, (1= wl o) [ TR
{[n], —q’([n], + An—2],}x +q[n], +aq’[n-2], ]
X+ -wl|g"(w)|dw
q*([n], +P)n-2],
s[D;{a,ﬂ((r—x)z,x>+(D:,a,ﬂ<r—x;x)ﬂ||g"||= Sl g"l. )
Now from (5), we have
| Do p(3X) IS Dy s (f5) | 421 SIS SNDY, s (5)+ 20 £ U< 3L A ®)

Therefore from (5), (7) and (8),

D8, ,(fi)- f()]
D)~ 20 ~(f = )) |+ Dl (8 2) 2 ()]
{1~ ¢’ (), + Aln—2), b + qln), + aq’[n 2],

id (x ¢ (n), + Pn-2], J_f (x)‘

<4l /gl e

{1~ ¢ ([, + A)ln—2), b+ qln), + aq’[n 2]
¢ n), + B2,

+f(x+

“)- f(X)‘-

Taking infimum overall g e W? on RHS and then using Peetre’s K -functional defined in the

previous section, we have

N 2 {[n], —q’([n], + B)[n—2] }x +4qln], +aq’[n-2],
| Dy s (f3) = f (%) < CKL (S, 9, (X))M{f, 7, + Pin -2, ]

{[n], — 4" ([n], + B)[n—2] jx +gln], +06q2[n—2]q}

_Co( f,5,,(X))+w[f 7 ([nl, + B)ln-2],
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Hence the proof of theorem is completed.

Theorem 2. Let f' e C,[0,0),g=g¢, €(0,1) such that g, >1 as n—>o0 and @, (f,5) be

its modulus of continuity on the finite interval [0,a+1]c[0,0), where a > 0. Then for every n >3,

we have

R[n]
- 1 +20,,,
g ([n], + P)n-3],

) L [n],R
|| Dn,a,ﬁ(fax) f(x) ||C[0,a]S f’\/q(’([n]q +ﬂ)[n —3]q },

where R=42(1+ )M ,(1+ a’)1+a+a).

Proof. For x€[0,a] and t>a+1, as t—x>1, we have
| f(t)— f(x) |SMf(2+x2+t2)SMf(2+3x2+(t—x)2)S6Mf(l+a2)(l—x)2. 9)

For x€[0,a] and f<a+1, we have

|f<r>—f(x>|swaﬂ(f,|r—x|>s[1+“""jwﬁl(m), 550 (10)
From (9) and (10), we have
O -F ) 6M_,-(1+az)(t—X)2+(1+|t_x|ja),,+l(f,5) a1

for xe€[0,a] and #2>0. Hence

| Dy, 5(f3X) = f(X) D7, 5( (@)= f(x)];x)
<6M , (1+a”)D!, ,((t—x)*;x)

n,

+@,, (f,0) 1+%D5’a’ﬂ ((t _x)Z;x)l/z .

Using Schwarz inequality and Lemma 4,
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| Dy, s (f3%) = f(x)]
y 42(1+ )M ,(1+a*)[n];
¢ ([n],+ PIn-2],

1 masp)
5\ ¢ (], + Bln-2],

) 1
[¢ O o+ B —3]q]

+w,,,(f,0)|1+

, 1
(¢ O G+ B30, ]

< R[n],
q°([n], + B)[n-3],

+0,,,(f0)

1 R[n),
I+— |—
5 \/ q°([n], + B)n-3],

R . .
(), we obtain the assertion of our theorem.

Taking 6 =, [—~—
& ¢*(n),+B)n-3],°

Corollary 1. If f € Lip, 0 on [0,a+1], thenfor n>3

R[n],
q°([n], + B)n-3],

1D .5 (f52) = f (3) llcgo. g < (1+2M )\/

Proof. For n to be sufficiently large, we have

Rinl,  _ Rn,
¢*(In,+A)n=31, \ "), + Pln-3,

Since lim n—3], =00, by f € Lip,,6 we obtain the required corollary.

n—>0 [
Weighted approximation theorem After that we discuss about the weighted approximation theorem,

which holds true on [0,).
Theorem 3. Let g=g, satisfies 0<q <1 and ¢g,—>1 as n—>o. Then for each

S €C[0,), we have

lim | DY, ,(f3%)= f(x)] =0
Proof: Using the theorem in [3], the following three conditions are sufficient to varify

lim|| D!, ,(t*,x)—x"|| ,=0,k=0,1,2. (12)
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as D’ (1,x)=1, the first condition k=0 of (12) is fulfilled. Therefore by Lemma 3, for n>2 we

have

| D (t;x)—x|
D (t;x)—x|| .= su el
| e sz XE[OE) 1+x°

[, [2), —a,"Bln-2], x
= 2 sup 3
qn ([n]‘In + ﬂ)[”l — 2]‘]” x€[0,0) 1 +X

[n], +q,aln-2], 1
+ sup 5

q,([n], +P)n—-2], xco1+x
[0, 12), —a, Aln=2), | ], +q,aln-2],
T, + P2, q,(n, +BIn-2],

which implies that

n,

lim|| Dy, ;(t;x)—x].=0
n—>0

Thus the second condition of (12) is also varified i.e. for k=1 as n—oco. Similarly for n>3,

we can take

i

{ q,[n], +[n; J 2
6 2 —1|sup

q, ([n], +p)[n-2], [n-3], xe[0,0)] + x*

[n]) {1+q, (1+[2]q,,)+20“1n3[”]§n [”_3]%}] x
sup

q, 5([n]qn +B)'[n-2], [n-3],

(2], [n], +24, el [n-3), [ a ’
q,’([n], +B)Y'[n-2],[n=3], \[n], +5

1D}, (7320 =x7 ||

+

xe[0,00) 1+ x2

sup ,
ef0.0) 1 + X7

which also implies that

lim || DZ"’aﬁ(tz;x) —-X ||x2 =0.
n—>0

Hence the proof of theorem is completed.
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Theorem 4. If g=gq, satisfies 0<g, <l and ¢, >1 as n—o0, for each [ eC,[0,00)

and @ >0, we have

| D (f) = F(0)]

lim su 0.
n— xe[og) (1+x)"™
Proof: For fixed x, >0,
| Dy, 5 (f5%) = f(x)]
xe[00) (1 + x2 )l+9
| Dy, 5 (f3%) = f(%)] | Dy, s (f30) = f(x)]
<sup
x<Xxq (1+x2)l+6 xX>Xx) (1+x2)]+9
| D}, s (1427 x) | | f(0)]
=1 Dy, s ()= S Negogy HILS L SuP A+ 227 + P )

First term of the above inequality tends to zero by Theorem 2. From Lemma 2 for a fixed x, >0 it

can easily be seen that n — o0 implies

| D, ,(1+1;x) |
su —

x> (1 + X2 )1+n9

Therefore we can choose x, >0 too large to be sup —L)
=X (1

+x2 )l+€

small enough. Thus the proof of

theorem is done.
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