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Abstract 

In this paper, a relationship between two problems of manufacturing process planning with an unstable 

(fluctuating) sequence of raw materials supply is considered. The first problem is a problem of 

smoothing of the initial sequence using a stock of limited volume for raw materials. This problem is 

stated and solved as a problem of convex programming subject to constraints produced by the presence 

of the stock. The second problem (which is not classical) is to find such a plan that satisfies the 

constraints and has the least number of changes of manufacturing process intensity. It is shown that the 

optimal plan to the first problem may be a solution to the second problem under certain conditions, in 

general case it gives the possibility to determine a lower bound of changes for each feasible plan. 

Keywords: smoothing, convex programming, active constraints, number of changes. 

Introduction 

The notion of smoothing is very wide, and the problem of smoothing has both many types and many 

different applications (see [1-4]). The choice of the type of smoothing is determined by concrete purposes 

of investigation.  Usually, the process of smoothing consists of replacing each data point of an initial 

sequence by some kind of average of surrounding data points. In the paper [5] is considered a problem of 

optimal smoothing with constraints, reduced to quadratic programming. We propose also a type of optimal 

smoothing for a problem of manufacturing process planning with a fluctuating supply of raw material. A 

presence of a stock of limited volume generates a set D of feasible smoothed vectors. The problem of 

optimal smoothing is reduced to a problem of convex separable programming [6]. Simple necessary and 

sufficient conditions of optimality are received. A decomposition algorithm to calculate optimal vector 
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𝑋𝑋0∈D is suggested. 

Another type of optimal smoothed vectors is such a vector 𝑋𝑋∗∈ (𝑥𝑥1
∗, 𝑥𝑥2

∗, …, 𝑥𝑥𝑛𝑛∗) ∈ D that has the 

least number of the indexes 𝑖𝑖 ∈ {1,2, … , 𝑛𝑛 − 1}, where 𝑥𝑥𝑖𝑖∗ ≠ 𝑥𝑥𝑖𝑖+1
∗ . It is shown [7, 8] that in a particular 

case the optimal vector 𝑋𝑋0 coincides with one of vectors 𝑋𝑋∗ (as a rule, there is a set of such vectors). In 

general case a lower bound of the least number of changes where 𝑥𝑥𝑖𝑖∗ ≠ 𝑥𝑥𝑖𝑖+1
∗  is received. A heuristic 

algorithm is elaborated to calculate optimal vectors with the least number of changes and some numerical 

examples are presented to illustrate these results. 

Model and Analysis 

Let an initial sequence {𝑃𝑃𝑖𝑖}, 𝑖𝑖 = 1, 𝑛𝑛�����,  be the input of raw materials to the stock of the volume α and 

a smoothed sequence {𝑥𝑥𝑖𝑖}, 𝑖𝑖 = 1, 𝑛𝑛�����, be the output of raw materials to be manufactured. The components 

of each smoothed feasible vector 𝑋𝑋 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) have to satisfy the restrictions 

 ∑ 𝑃𝑃𝑖𝑖
𝑗𝑗
𝑖𝑖=1 − 𝛼𝛼 ≤ ∑ 𝑥𝑥𝑖𝑖

𝑗𝑗
𝑖𝑖=1 ≤ ∑ 𝑃𝑃𝑖𝑖

𝑗𝑗
𝑖𝑖=1 , 𝑗𝑗 = 1, 𝑛𝑛 − 1����������, ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 = ∑ 𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 

where the parameter α is a factor of smoothing. Let us designate  𝐴𝐴𝑗𝑗 = ∑ 𝑃𝑃𝑖𝑖
𝑗𝑗
𝑖𝑖=1 − 𝛼𝛼, 𝐵𝐵𝑗𝑗 = ∑ 𝑃𝑃𝑖𝑖

𝑗𝑗
𝑖𝑖=1 , 

𝑗𝑗 = 1, 𝑛𝑛 − 1����������, 𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛 = ∑ 𝑃𝑃𝑖𝑖𝑛𝑛
𝑖𝑖=1 . The problem of optimal smoothing can be stated [7] as a problem of 

convex programming: find a vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷, that minimizes the function 

 𝐹𝐹(𝑋𝑋) = ∑ 𝑓𝑓(𝑥𝑥𝑖𝑖),𝑛𝑛
𝑖𝑖=1  (1) 

where 𝑓𝑓(𝑥𝑥) is a continuous strictly convex function, and the feasible set 𝐷𝐷. 

 𝐷𝐷 = �𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛: 𝐴𝐴𝑗𝑗 ≤ ∑ 𝑥𝑥𝑖𝑖
𝑗𝑗
𝑖𝑖=1 ≤ 𝐵𝐵𝑗𝑗 , 𝐴𝐴𝑗𝑗 < 𝐵𝐵𝑗𝑗 , 𝑗𝑗 = 1, 𝑛𝑛 − 1����������, ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛� (2) 

is a special set of 𝑅𝑅𝑛𝑛  with lower (𝐴𝐴𝑗𝑗 ) and upper (𝐵𝐵𝑗𝑗 ) constraints. 

It’s evident that an optimal vector exists because the function (1) is continuous and the set 𝐷𝐷 is 

limited and closed. 

Theorem 1. A vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷 minimizes the function 𝐹𝐹(𝑋𝑋) if and only if every 

pair of its components 𝑥𝑥𝑘𝑘0 and 𝑥𝑥𝑗𝑗0 (k > j) satisfies one of the following conditions: 

A) 𝑥𝑥𝑘𝑘0 = 𝑥𝑥𝑗𝑗0; 

B) 𝑥𝑥𝑘𝑘0 > 𝑥𝑥𝑗𝑗0, and there exists such a number m∈ {𝑗𝑗, 𝑗𝑗 + 1, …𝑘𝑘 − 1} that ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑚𝑚
𝑖𝑖=1 = 𝐵𝐵𝑚𝑚 ; 
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C) 𝑥𝑥𝑘𝑘0 < 𝑥𝑥𝑗𝑗0, and there exists such a number l∈ {𝑗𝑗, 𝑗𝑗 + 1, …𝑘𝑘 − 1} that ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙
𝑖𝑖=1 = 𝐴𝐴𝑙𝑙 . 

Necessity. Notice that for any strictly convex function 𝑓𝑓(𝑥𝑥) its difference ∆(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥)  

is strictly increasing with ℎ > 0. We assume the conditions A), B), C) to be false at least for one pair of 

components 𝑥𝑥𝑘𝑘0  and 𝑥𝑥𝑗𝑗0  (𝑘𝑘 >  𝑗𝑗). That is 𝑥𝑥𝑘𝑘0 ≠ 𝑥𝑥𝑗𝑗0 and 

a) if 𝑥𝑥𝑘𝑘0 > 𝑥𝑥𝑗𝑗0, then ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑚𝑚
𝑖𝑖=1 < 𝐵𝐵𝑚𝑚  for every 𝑚𝑚 ∈ {𝑗𝑗, 𝑗𝑗 + 1, …𝑘𝑘 − 1}; 

b) if 𝑥𝑥𝑘𝑘0 < 𝑥𝑥𝑗𝑗0, then ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙
𝑖𝑖=1 > 𝐴𝐴𝑙𝑙  for every 𝑙𝑙 ∈ {𝑗𝑗, 𝑗𝑗 + 1, …𝑘𝑘 − 1}. 

For the case a) we’ll construct the new vector 𝑋𝑋(ℎ) = �𝑥𝑥1
0, … , 𝑥𝑥𝑗𝑗0 + ℎ, 𝑥𝑥𝑗𝑗+1

0 , … , 𝑥𝑥𝑘𝑘0 − ℎ, 𝑥𝑥𝑘𝑘+1
0 , … 𝑥𝑥𝑛𝑛0�. If 

ℎ is a positive rather little number, then this vector will be feasible. Moreover the difference 𝐹𝐹�𝑋𝑋(ℎ)� −

𝐹𝐹(𝑋𝑋0) = 𝑓𝑓�𝑥𝑥𝑗𝑗0 + ℎ� − 𝑓𝑓�𝑥𝑥𝑗𝑗0� + 𝑓𝑓(𝑥𝑥𝑘𝑘0 − ℎ) − 𝑓𝑓�𝑥𝑥𝑘𝑘0� = ∆�𝑥𝑥𝑗𝑗0� − ∆�𝑥𝑥𝑘𝑘0 − ℎ� will be negative if ℎ < 𝑥𝑥𝑘𝑘0 −

𝑥𝑥𝑗𝑗0. By the same way we’ll receive the contradiction to optimality of the vector  𝑋𝑋0 for the case b). 

Sufficiency. Assume every pair of a vector  𝑋𝑋0 to satisfy one of the conditions A),B),C), but there 

exists another feasible vector 𝑌𝑌0 = (𝑦𝑦1
0, 𝑦𝑦2

0, … , 𝑦𝑦𝑛𝑛0)  such that minimizes the function (1) in the set 𝐷𝐷. It 

means that every pair of the components 𝑦𝑦𝑘𝑘0 and 𝑦𝑦𝑗𝑗0  (𝑘𝑘 >  𝑗𝑗) satisfies one of the conditions A),B),C). 

We’ll prove that these vectors have to be the same. Indeed, assume 𝑦𝑦1
0 = 𝑥𝑥1

0, 𝑦𝑦2
0 = 𝑥𝑥2

0, … , 𝑦𝑦𝑗𝑗−1
0 = 𝑥𝑥𝑗𝑗−1

0 , but 

𝑦𝑦𝑗𝑗0 > 𝑥𝑥𝑗𝑗0 (the case  𝑦𝑦𝑗𝑗0 < 𝑥𝑥𝑗𝑗0 may be considered by the same way). Since ∑ 𝑦𝑦𝑖𝑖0𝑖𝑖=𝑛𝑛
𝑖𝑖=1 = ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑛𝑛

𝑖𝑖=1 = 𝐵𝐵𝑛𝑛  there 

exist such a number 𝑘𝑘 > 𝑗𝑗 that the following relationships are held: 

 𝑦𝑦𝑗𝑗0 > 𝑥𝑥𝑗𝑗0, 𝑦𝑦𝑗𝑗+1
0 ≥ 𝑥𝑥𝑗𝑗+1

0 , 𝑦𝑦𝑗𝑗+1
0 ≥ 𝑥𝑥𝑗𝑗+2

0 , … , 𝑦𝑦𝑘𝑘−1
0 ≥ 𝑥𝑥𝑘𝑘−1

0 , 𝑦𝑦𝑘𝑘0 < 𝑥𝑥𝑘𝑘0. (3) 

In the case 𝑦𝑦𝑗𝑗0 ≤  𝑦𝑦𝑘𝑘0 we’ll receive the following inequalities 𝑥𝑥𝑘𝑘0 > 𝑦𝑦𝑘𝑘0 ≥ 𝑦𝑦𝑗𝑗0 > 𝑥𝑥𝑗𝑗0. In accordance with 

the condition B) there exists such a number m∈ {𝑗𝑗, 𝑗𝑗 + 1, … 𝑘𝑘 − 1} that ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑚𝑚
𝑖𝑖=1 = 𝐵𝐵𝑚𝑚 . It means that the 

components of the vector 𝑌𝑌0 are to satisfy the inequality ∑ 𝑦𝑦𝑖𝑖0𝑖𝑖=𝑚𝑚
𝑖𝑖=1 > 𝐵𝐵𝑚𝑚 , that is this vector is not feasible!  

In the other case when 𝑦𝑦𝑗𝑗0 >  𝑦𝑦𝑘𝑘0 in accordance with the condition C) there exists such a number 

l∈ {𝑗𝑗, 𝑗𝑗 + 1, …𝑘𝑘 − 1}, that ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙
𝑖𝑖=1 = 𝐴𝐴𝑙𝑙 . It means that the components of the vector 𝑋𝑋0 are to satisfy the 

inequality ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙
𝑖𝑖=1 < 𝐴𝐴𝑙𝑙 , that contradicts to the fact  𝑋𝑋0 ∈ 𝐷𝐷. 

So the vectors  𝑋𝑋0 and  𝑌𝑌0 coincide. 

Corollary 1. A vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷 minimizes the function 𝐹𝐹(𝑋𝑋) if and only if every 

pair of its components 𝑥𝑥𝑘𝑘0 and 𝑥𝑥𝑘𝑘+1
0  satisfies one of the following conditions: 

A) 𝑥𝑥𝑘𝑘+1
0 = 𝑥𝑥𝑘𝑘0; 
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B) 𝑥𝑥𝑘𝑘+1
0 > 𝑥𝑥𝑘𝑘0 and ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘

𝑖𝑖=1 = 𝐵𝐵𝑘𝑘; 

C) 𝑥𝑥𝑘𝑘+1
0 < 𝑥𝑥𝑘𝑘0 and ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘

𝑖𝑖=1 = 𝐴𝐴𝑘𝑘 . 

Corollary 2. A vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷 minimizes the function 𝐹𝐹(𝑋𝑋) if and only if for each 

number 𝑘𝑘 ∈ {1,2, … , 𝑛𝑛 − 1} one of the following conditions is held: 

1) if ∑ 𝑥𝑥𝑖𝑖0𝑘𝑘
𝑖𝑖=1 ∈ (𝐴𝐴𝑘𝑘 , 𝐵𝐵𝑘𝑘) then 𝑥𝑥𝑘𝑘0=𝑥𝑥𝑘𝑘+1

0 ; 

2) if ∑ 𝑥𝑥𝑖𝑖0𝑘𝑘
𝑖𝑖=1 = 𝐴𝐴𝑘𝑘   then 𝑥𝑥𝑘𝑘0 ≥ 𝑥𝑥𝑘𝑘+1

0 ; 

3) if ∑ 𝑥𝑥𝑖𝑖0𝑘𝑘
𝑖𝑖=1 = 𝐵𝐵𝑘𝑘   then 𝑥𝑥𝑘𝑘0 ≤ 𝑥𝑥𝑘𝑘+1

0 . 

Theorem 2. Let 𝑅𝑅+
𝑛𝑛 = �𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛: 𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 𝑛𝑛�⃐������. These three assertions below are equivalent: 

1) the set 𝐷𝐷 ∩ 𝑅𝑅+
𝑛𝑛 ≠ ∅ ;  

2) the inequalities 𝐵𝐵1 ≥ 0, 𝐵𝐵𝑗𝑗 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚�0, 𝐴𝐴1, … , 𝐴𝐴𝑗𝑗−1�, 𝑗𝑗 = 2, 𝑛𝑛�⃐�����, are held;  

3) all the components of the optimal vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷 are nonnegative. 

Let us prove that the assertion 1) implies the assertion 2). Indeed, assume there exist such a pair of 

indexes 𝑚𝑚 and 𝑘𝑘 (𝑘𝑘 > 𝑚𝑚) that 𝐵𝐵𝑘𝑘 < 𝐴𝐴𝑚𝑚  (if 𝑚𝑚 = 0 then 𝐴𝐴0 = 0). In this case we obtain the following 

inequality 

 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖=𝑘𝑘
𝑖𝑖=𝑚𝑚+1 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖=𝑘𝑘

𝑖𝑖=1 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖=𝑚𝑚
𝑖𝑖=1 < 𝐵𝐵𝑘𝑘 − 𝐴𝐴𝑚𝑚 < 0. (4) 

It means that at least one component of any feasible vector 𝑋𝑋 ∈ 𝐷𝐷 is to be negative. 

Let us prove that the assertion 2) implies the assertion 3). Assume there exist negative components of 

the optimal vector 𝑋𝑋0 ∈ 𝐷𝐷. Its evident there are positive components as well because ∑ 𝑥𝑥𝑖𝑖0 = 𝐵𝐵𝑛𝑛 ≥ 0.𝑖𝑖=𝑛𝑛
𝑖𝑖=1  

Let 𝑥𝑥𝑗𝑗0 be negative component with the least index. There are two possible alternatives: 

a) all positive components follow 𝑥𝑥𝑗𝑗0; 

b) there is at least one positive component 𝑥𝑥𝑘𝑘0, 𝑘𝑘 < 𝑗𝑗. 

In the first case the following inequalities  

 𝑥𝑥1
0 = 0, , , , 𝑥𝑥𝑗𝑗−1

0 = 0, 𝑥𝑥𝑗𝑗0 < 0, 𝑥𝑥𝑗𝑗+1
0 ≤ 0, … , 𝑥𝑥𝑚𝑚−1

0 ≤ 0, 𝑥𝑥𝑚𝑚0 > 0, … (5) 

are held. In accordance with the corollary 1   ∑ 𝑥𝑥𝑖𝑖0 =𝑖𝑖=𝑚𝑚−1
𝑖𝑖=1 𝐵𝐵𝑚𝑚−1 < 0 because 𝑥𝑥𝑚𝑚0 > 𝑥𝑥𝑚𝑚−1

0 .  

In the second case the following inequalities 

 𝑥𝑥1
0 ≥ 0, … , 𝑥𝑥𝑘𝑘−1

0 ≥ 0, 𝑥𝑥𝑘𝑘0 > 0, 𝑥𝑥𝑘𝑘+1
0 = 0, … , 𝑥𝑥𝑗𝑗−1

0 = 0, 𝑥𝑥𝑗𝑗0 < 0, … (6) 

are held. In accordance with the corollary 1 ∑ 𝑥𝑥𝑖𝑖0 =𝑖𝑖=𝑘𝑘
𝑖𝑖=1 𝐴𝐴𝑘𝑘  because 𝑥𝑥𝑘𝑘+1

0 < 𝑥𝑥𝑘𝑘0 .  If all components 
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𝑥𝑥𝑖𝑖0 ≤ 0, 𝑖𝑖 = 𝑗𝑗 + 1, 𝑛𝑛�⃐�������������,  then ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑛𝑛
𝑖𝑖=𝑘𝑘+1 = 𝐵𝐵𝑛𝑛 − 𝐴𝐴𝑘𝑘 < 0.  If there exists a component 𝑥𝑥𝑙𝑙+1

0  such that 

𝑥𝑥𝑗𝑗0 < 0, 𝑥𝑥𝑗𝑗+1
0 ≤ 0, … , 𝑥𝑥𝑙𝑙0 ≤ 0, 𝑥𝑥𝑙𝑙+1

0 > 0, …  then ∑ 𝑥𝑥𝑖𝑖0 = 𝐵𝐵𝑙𝑙 ,𝑖𝑖=𝑙𝑙
𝑖𝑖=1  because 𝑥𝑥𝑙𝑙+1

0 > 𝑥𝑥𝑙𝑙0.  It means that 

∑ 𝑥𝑥𝑖𝑖0 = 𝐵𝐵𝑙𝑙 − 𝐴𝐴𝑘𝑘 < 0.𝑖𝑖=𝑙𝑙
𝑖𝑖=𝑘𝑘+1  

Obviously, the assertion 3 implies the assertion 1. 

Definition 1. The restriction 𝐴𝐴𝑗𝑗 ≤ ∑ 𝑥𝑥𝑖𝑖
𝑗𝑗
𝑖𝑖=1  (∑ 𝑥𝑥𝑖𝑖

𝑗𝑗
𝑖𝑖=1 ≤ 𝐵𝐵𝑗𝑗 ) is said to be an active constraint for the 

optimal vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0)  if 𝐴𝐴𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖0
𝑗𝑗
𝑖𝑖=1  and 𝑥𝑥𝑗𝑗0 > 𝑥𝑥𝑗𝑗+1

0  (∑ 𝑥𝑥𝑖𝑖0
𝑗𝑗
𝑖𝑖=1 = 𝐵𝐵𝑗𝑗  and 𝑥𝑥𝑗𝑗0  < 𝑥𝑥𝑗𝑗+1

0 ). 

This definition a little differs from the usual definition of active constraints [9].  

The following theorem gives the possibility to determine step by step all active constraints and 

readily find the optimal vector 𝑋𝑋0 by the decomposition of the initial problem into similar problems of less 

dimension. 

Theorem 3. Let µ𝑖𝑖 = 𝐵𝐵𝑖𝑖 − 𝑖𝑖 𝐵𝐵𝑛𝑛
𝑛𝑛

 and 𝜈𝜈𝑖𝑖 = 𝑖𝑖 𝐵𝐵𝑛𝑛
𝑛𝑛
− 𝐴𝐴𝑖𝑖 , 𝑖𝑖 = 1, 𝑛𝑛 − 1�⃐��������������, then 

a) if µ𝑖𝑖 ≥ 0, 𝜈𝜈𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, 𝑛𝑛 − 1�⃐��������������, then all the components of optimal vector are equal to 𝐵𝐵𝑛𝑛
𝑛𝑛

; 

b) if µ𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚µ𝑖𝑖 < 0, then the components of optimal vector satisfy the condition ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘
𝑖𝑖=1 = 𝐵𝐵𝑘𝑘; 

c) if 𝜈𝜈𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚𝜈𝜈𝑖𝑖 < 0, then the components of optimal vector satisfy the condition ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙
𝑖𝑖=1 = 𝐴𝐴𝑙𝑙 . 

The assertion a) results from the theorem 1.  

Assume µ𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚µ𝑖𝑖 = 𝐵𝐵𝑘𝑘 − 𝑘𝑘 𝐵𝐵𝑛𝑛
𝑛𝑛

< 0, but ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘
𝑖𝑖=1 = 𝐶𝐶𝑘𝑘 < 𝐵𝐵𝑘𝑘 . In accordance with the corollary 2 

we have the inequality 𝑥𝑥𝑘𝑘0 ≥ 𝑥𝑥𝑘𝑘+1
0 . Let us consider two cases depending on the value of the component 𝑥𝑥𝑘𝑘0. 

1) In the case  𝑥𝑥𝑘𝑘0 ≥
𝐵𝐵𝑛𝑛
𝑛𝑛

  the inequalities ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘
𝑖𝑖=1 = 𝐶𝐶𝑘𝑘 < 𝐵𝐵𝑘𝑘 < 𝑘𝑘 𝐵𝐵𝑛𝑛

𝑛𝑛
 mean that there exists such a 

number 𝑗𝑗 < 𝑘𝑘 that 𝑥𝑥𝑗𝑗0 < 𝐵𝐵𝑛𝑛
𝑛𝑛

, 𝑥𝑥𝑗𝑗+1
0 ≥ 𝐵𝐵𝑛𝑛

𝑛𝑛
, … , 𝑥𝑥𝑘𝑘0 ≥

𝐵𝐵𝑛𝑛
𝑛𝑛

. In accordance with the corollary 1 it means 

that ∑ 𝑥𝑥𝑖𝑖0
𝑖𝑖=𝑗𝑗
𝑖𝑖=1 = 𝐵𝐵𝑗𝑗 . Estimating the difference µ𝑘𝑘 − µ𝑗𝑗 = 𝐵𝐵𝑘𝑘 − 𝑘𝑘 𝐵𝐵𝑛𝑛

𝑛𝑛
− 𝐵𝐵𝑗𝑗 + 𝑗𝑗 𝐵𝐵𝑛𝑛

𝑛𝑛
> 𝐶𝐶𝑘𝑘 − 𝐵𝐵𝑗𝑗 −

(𝑘𝑘 − 𝑗𝑗) 𝐵𝐵𝑛𝑛
𝑛𝑛

= ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑘𝑘
𝑖𝑖=𝑗𝑗+1 − (𝑘𝑘 − 𝑗𝑗) 𝐵𝐵𝑛𝑛

𝑛𝑛
≥ 0 

We receive the contradiction with the definition of the value µ𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚µ𝑖𝑖 . 

2) In the case 𝑥𝑥𝑘𝑘+1
0  ≤ 𝑥𝑥𝑘𝑘0 < 𝐵𝐵𝑛𝑛

𝑛𝑛
 the inequalities ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑛𝑛

𝑖𝑖=𝑘𝑘+1 = 𝐵𝐵𝑛𝑛 − 𝐶𝐶𝑘𝑘 > 𝐵𝐵𝑛𝑛 − 𝐵𝐵𝑘𝑘 > 𝐵𝐵𝑛𝑛 − 𝑘𝑘 𝐵𝐵𝑛𝑛
𝑛𝑛

=

(𝑛𝑛 − 𝑘𝑘) 𝐵𝐵𝑛𝑛
𝑛𝑛

 mean that there exists such a number 𝑙𝑙 > 𝑘𝑘 that 𝑥𝑥𝑘𝑘+1
0 < 𝐵𝐵𝑛𝑛

𝑛𝑛
, 𝑥𝑥𝑘𝑘+2

0 < 𝐵𝐵𝑛𝑛
𝑛𝑛

, … , 𝑥𝑥𝑙𝑙0 <
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𝐵𝐵𝑛𝑛
𝑛𝑛

, 𝑥𝑥𝑙𝑙+1
0 ≥ 𝐵𝐵𝑛𝑛.

𝑛𝑛
 . In accordance with the corollary 1 it means that ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙

𝑖𝑖=1 = 𝐵𝐵𝑙𝑙 . Estimating the 

difference µ𝑙𝑙 − µ𝑘𝑘 = 𝐵𝐵𝑙𝑙 − 𝑙𝑙 𝐵𝐵𝑛𝑛
𝑛𝑛
− 𝐵𝐵𝑘𝑘 + 𝑘𝑘 𝐵𝐵𝑛𝑛

𝑛𝑛
< 𝐵𝐵𝑙𝑙 − 𝐶𝐶𝑘𝑘 − (𝑙𝑙 − 𝑘𝑘) 𝐵𝐵𝑛𝑛

𝑛𝑛
= ∑ 𝑥𝑥𝑖𝑖0𝑖𝑖=𝑙𝑙

𝑖𝑖=𝑘𝑘+1 − (𝑙𝑙 − 𝑘𝑘) 𝐵𝐵𝑛𝑛
𝑛𝑛

<

0  

we receive the contradiction with the definition of the value µ𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚µ𝑖𝑖 . 

Corollary 3. The structure of the optimal vector  𝑋𝑋0 = (𝑥𝑥1
0, 𝑥𝑥2

0, … , 𝑥𝑥𝑛𝑛0) ∈ 𝐷𝐷 is completely determined 

by the presence of 𝑝𝑝 (0 ≤ 𝑝𝑝 ≤ 𝑛𝑛 − 1) active constraints (notice that in the simple case, when 𝑝𝑝 = 0 the 

optimal vector is absolutely smoothed: 𝑥𝑥𝑖𝑖0 = 𝐵𝐵𝑛𝑛 𝑛𝑛� , 𝑖𝑖 = 1, 𝑛𝑛����� ). Namely, let 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑝𝑝  (0 < 𝑠𝑠1 < 𝑠𝑠2 <

⋯𝑠𝑠𝑝𝑝 < 𝑛𝑛) be the numbers of the active constraints  ∑ 𝑥𝑥𝑖𝑖0
𝑠𝑠𝑙𝑙
𝑖𝑖=1 = 𝑀𝑀𝑠𝑠𝑙𝑙 , 𝑙𝑙 = 1, 𝑝𝑝�����. Then 𝑥𝑥𝑖𝑖0 = 𝑧𝑧𝑙𝑙 =

𝑀𝑀𝑠𝑠𝑙𝑙−𝑀𝑀𝑠𝑠𝑙𝑙−1
𝑠𝑠𝑙𝑙−𝑠𝑠𝑙𝑙−1

 

for    𝑖𝑖  = 𝑠𝑠𝑙𝑙−1 + 1, 𝑠𝑠𝑙𝑙�������������� ,  𝑙𝑙 = 1, 𝑝𝑝 + 1����������  where we introduce the notations 𝑠𝑠0 = 0,𝑀𝑀0 = 0, 𝑠𝑠𝑝𝑝+1 = 𝑛𝑛,𝑀𝑀𝑛𝑛 =

𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛 .  

In the case when lower active constraints and upper active constraints are strictly following one another, 

the optimal vector 𝑋𝑋0 at the same time has the minimal number  𝑝𝑝 of changes [7, 8]. Generally, the set of p 

active constraints consists of some number q (q ≤ p) groups of the same (either lower or upper) type 

consecutive constraints. Let  𝑀𝑀𝑗𝑗𝑘𝑘 , 𝑘𝑘 = 1, 𝑞𝑞,����� 𝑗𝑗𝑘𝑘 <  𝑗𝑗𝑘𝑘+1 , be representatives of these groups, and 𝑦𝑦𝑘𝑘 =

 
𝑀𝑀𝑗𝑗𝑘𝑘−𝑀𝑀𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

, 𝑘𝑘 = 1, 𝑞𝑞 + 1����������, �𝑗𝑗0 = 0, 𝑀𝑀𝑗𝑗0 = 0, 𝑗𝑗𝑞𝑞+1 = 𝑛𝑛, 𝑀𝑀𝑛𝑛 = An =  𝐵𝐵𝑛𝑛�.  

Theorem 4. Let every pair of the values  𝑦𝑦𝑘𝑘  and 𝑦𝑦𝑘𝑘+1, 𝑘𝑘 = 1, 𝑞𝑞�����, satisfies the inequality 𝑦𝑦𝑘𝑘 <  𝑦𝑦𝑘𝑘+1 

(𝑦𝑦𝑘𝑘 >  𝑦𝑦𝑘𝑘+1)  if the active constraint 𝑀𝑀𝑗𝑗𝑘𝑘  is upper (lower) constraint. Then q will be the least possible 

number of changes for any feasible vector 𝑋𝑋 ∈ 𝐷𝐷. 

Let us introduce the subsets   𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚 = {𝑗𝑗𝑘𝑘−1 + 1, 𝑗𝑗𝑘𝑘−1 + 2, … , 𝑗𝑗𝑘𝑘+𝑚𝑚 − 1, 𝑗𝑗𝑘𝑘+𝑚𝑚} , 𝑘𝑘 ∈ {1, . . 𝑞𝑞 +

1},𝑚𝑚 ∈ {0,1, . . . , 𝑞𝑞 − 𝑘𝑘 + 1}, of the set 𝐽𝐽0,𝑞𝑞+1 = {1,2, … 𝑛𝑛}. The number (𝑚𝑚 + 1) we’ll name the length of 

the subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚  . 

Lemma. Every vector 𝑋𝑋 ∈ 𝐷𝐷 under the assumptions of the theorem 3 will have at least m changes at 

any subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚  of the length (𝑚𝑚 + 1). 

The proof of this lemma is realized by means of mathematical induction. 

At first we’ll prove that every feasible vector 𝑋𝑋 ∈ 𝐷𝐷 has at least one change at any subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+1 of 

the length 2. Suppose there exist such a vector 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∈ 𝐷𝐷 and such a subset  𝐽𝐽𝑘𝑘−1,𝑘𝑘+1 of the 

length 2, that 𝑥𝑥𝑖𝑖 = 𝑧𝑧𝑘𝑘  = const for all 𝑖𝑖 ∈ 𝐽𝐽𝑘𝑘−1,𝑘𝑘+1. It’s not difficult to receive the following inequalities for 

the components of any feasible vector 𝑋𝑋 ∈ 𝐷𝐷:  
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   𝐴𝐴𝑗𝑗𝑘𝑘+1 − 𝐵𝐵𝑗𝑗𝑘𝑘  ≤  ∑ 𝑥𝑥𝑖𝑖
𝑖𝑖=𝑗𝑗𝑘𝑘+1
𝑖𝑖=𝑗𝑗𝑘𝑘+1  ≤ 𝐵𝐵𝑗𝑗𝑘𝑘+1 − 𝐴𝐴𝑗𝑗𝑘𝑘 , 𝑘𝑘 ∈ {0,1, … , 𝑞𝑞}. (7) 

It means that the constant 𝑧𝑧𝑘𝑘   has to satisfy the inequalities 

 
   𝐴𝐴𝑗𝑗𝑘𝑘−𝐵𝐵𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

 ≤ 𝑧𝑧𝑘𝑘  ≤  
𝐵𝐵𝑗𝑗𝑘𝑘−𝐴𝐴𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

, (8) 

 
  𝐴𝐴𝑗𝑗𝑘𝑘+1−𝐵𝐵𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

 ≤ 𝑧𝑧𝑘𝑘 ≤  
𝐵𝐵𝑗𝑗𝑘𝑘+1−𝐴𝐴𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

. (9) 

These inequalities can rewritten as follows 

 
   𝐴𝐴𝑗𝑗𝑘𝑘−𝐵𝐵𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

 ≤ 𝑧𝑧𝑘𝑘 ≤  
𝐵𝐵𝑗𝑗𝑘𝑘+1−𝐴𝐴𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

, (10) 

 
  𝐴𝐴𝑗𝑗𝑘𝑘+1−𝐵𝐵𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

 ≤ 𝑧𝑧𝑘𝑘 ≤  
𝐵𝐵𝑗𝑗𝑘𝑘−𝐴𝐴𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

. (11) 

If the active constraint 𝑀𝑀𝑗𝑗𝑘𝑘  is an upper one (𝑀𝑀𝑗𝑗𝑘𝑘 =  𝐵𝐵𝑗𝑗𝑘𝑘 ) then the inequality 

 𝑦𝑦𝑘𝑘 = 
𝐵𝐵𝑗𝑗𝑘𝑘−𝐴𝐴𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

 < 𝑦𝑦𝑘𝑘+1 =
  𝐴𝐴𝑗𝑗𝑘𝑘+1−𝐵𝐵𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

 (12) 

has to be valid in accordance with the assumptions of the theorem 3. But it contradicts the inequality (10). If 

the active constraint 𝑀𝑀𝑗𝑗𝑘𝑘  is a lower one (𝑀𝑀𝑗𝑗𝑘𝑘 =  𝐴𝐴𝑗𝑗𝑘𝑘 ) then the inequality 

 𝑦𝑦𝑘𝑘 = 
𝐴𝐴𝑗𝑗𝑘𝑘−𝐵𝐵𝑗𝑗𝑘𝑘−1  

𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1
  > 𝑦𝑦𝑘𝑘+1 =

  𝐵𝐵𝑗𝑗𝑘𝑘+1−𝐴𝐴𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

 (13) 

has to be valid in accordance with the assumptions of the theorem 3. But it contradicts the inequality (10). So 

we have proved that every feasible vector 𝑋𝑋 ∈ 𝐷𝐷 has at least one change at any subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+1 of the 

length 2.  

Now we’ll prove the following assertion: if any feasible vector 𝑋𝑋 ∈ 𝐷𝐷 has at least (t - 1) changes at 

any subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑡𝑡−1 of the length t, 𝑡𝑡 = 2,3, … ,𝑚𝑚, then any feasible vector 𝑋𝑋 ∈ 𝐷𝐷 will have at least m 

changes at any subset 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚  of the length 𝑚𝑚 + 1. 

Suppose there exists a feasible vector 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∈ 𝐷𝐷 having only (𝑚𝑚 − 1) changes at a subset 

 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚   of the length (𝑚𝑚 + 1). Firstly, it means there are not changes at the subsets 𝐽𝐽𝑘𝑘−1,𝑘𝑘  and 

 𝐽𝐽𝑘𝑘+𝑚𝑚−1,𝑘𝑘+𝑚𝑚 . Secondly, there is only one change at each subset  𝐽𝐽𝑘𝑘+𝑟𝑟−1,𝑘𝑘+𝑟𝑟 , 𝑟𝑟 = 1,𝑚𝑚 − 1�����������, of the length 1. 

Really, otherwise we’ll receive a contradiction with our assumption about the subsets of the length t, t = 2, 

3,…, m. 
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Let  𝑙𝑙𝑟𝑟 ∈  𝐽𝐽𝑘𝑘+𝑟𝑟−1,𝑘𝑘+𝑟𝑟 , 𝑟𝑟 = 1,𝑚𝑚 − 1�����������, be the numbers of changes, i.e. where 𝑥𝑥𝑙𝑙𝑟𝑟  ≠ 𝑥𝑥𝑙𝑙𝑟𝑟+1. So we’ll 

have the following values of the components of the vector 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∈ 𝐷𝐷: 𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for 

𝑖𝑖 = 𝑗𝑗𝑘𝑘−1 + 1, 𝑙𝑙1�������������� ; 𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘+𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for 𝑖𝑖 = 𝑙𝑙𝑟𝑟 , 𝑙𝑙𝑟𝑟+1���������,  𝑟𝑟 = 1,𝑚𝑚 − 2����������� ; 𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘+𝑚𝑚−1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  for i = 

𝑙𝑙𝑚𝑚−1, 𝑗𝑗𝑘𝑘+𝑚𝑚�������������. 

We’ll consider in details the case when the active constraint 𝑀𝑀𝑗𝑗𝑘𝑘  is an upper one, i.e. 𝑀𝑀𝑗𝑗𝑘𝑘 =  𝐵𝐵𝑗𝑗𝑘𝑘 . 

The other case when the active constraint 𝑀𝑀𝑗𝑗𝑘𝑘  is a lower one can be considered by analogy. 

So the inequality (12) is valid, and for the components 𝑥𝑥𝑖𝑖  at the subset  𝐽𝐽𝑘𝑘−1,𝑘𝑘+1 we’ll have 

𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘  for 𝑖𝑖 = 𝑗𝑗𝑘𝑘−1 + 1, 𝑙𝑙1��������������, and 𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘+1 for 𝑖𝑖 = 𝑙𝑙1 + 1, 𝑗𝑗𝑘𝑘+1��������������. Let us prove that 𝑧𝑧𝑘𝑘  < 𝑧𝑧𝑘𝑘+1. 

Indeed, the inequalities (7) imply the following estimates for the values 𝑧𝑧𝑘𝑘  and 𝑧𝑧𝑘𝑘+1: 

  𝐴𝐴𝑗𝑗𝑘𝑘−𝐵𝐵𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

 ≤ 𝑧𝑧𝑘𝑘  ≤  
𝐵𝐵𝑗𝑗𝑘𝑘−𝐴𝐴𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

,   𝐴𝐴𝑗𝑗𝑘𝑘+1 − 𝐵𝐵𝑗𝑗𝑘𝑘  ≤ (𝑙𝑙1 − 𝑗𝑗𝑘𝑘)𝑧𝑧𝑘𝑘  + (𝑗𝑗𝑘𝑘+1 −𝑙𝑙1)𝑧𝑧𝑘𝑘+1 ≤  𝐵𝐵𝑗𝑗𝑘𝑘+1 − 𝐴𝐴𝑗𝑗𝑘𝑘 . 

If we suppose that 𝑧𝑧𝑘𝑘  ≥ 𝑧𝑧𝑘𝑘+1, then we’ll receive the following estimates for the value 𝑧𝑧𝑘𝑘 : 

  𝐴𝐴𝑗𝑗𝑘𝑘+1−𝐵𝐵𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

 ≤ 𝑧𝑧𝑘𝑘  ≤  
𝐵𝐵𝑗𝑗𝑘𝑘−𝐴𝐴𝑗𝑗𝑘𝑘−1
𝑗𝑗𝑘𝑘−𝑗𝑗𝑘𝑘−1

. 

This inequality contradicts the inequality (12). So the inequality 𝑧𝑧𝑘𝑘  < 𝑧𝑧𝑘𝑘+1 is valid and for the 

value 𝑧𝑧𝑘𝑘+1 we’ll receive the lower estimate: 

 𝑧𝑧𝑘𝑘+1 ≥  
  𝐴𝐴𝑗𝑗𝑘𝑘+1−𝐵𝐵𝑗𝑗𝑘𝑘
𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘

. (14) 

For the next subset  𝐽𝐽𝑘𝑘+1,𝑘𝑘+2 the inequalities (7) involve the following estimates of the values 

  𝑧𝑧𝑘𝑘+1and 𝑧𝑧𝑘𝑘+2: 

𝐴𝐴𝑗𝑗𝑘𝑘+2 − 𝐵𝐵𝑗𝑗𝑘𝑘+1  ≤ (𝑙𝑙2 − 𝑗𝑗𝑘𝑘+1)𝑧𝑧𝑘𝑘+1 + (𝑗𝑗𝑘𝑘+2 −𝑙𝑙2)𝑧𝑧𝑘𝑘+2 ≤  𝐵𝐵𝑗𝑗𝑘𝑘+2 − 𝐴𝐴𝑗𝑗𝑘𝑘+1 . 

Taking into account that 𝑀𝑀𝑗𝑗𝑘𝑘+1 =  𝐴𝐴𝑗𝑗𝑘𝑘+1 we’ll prove that 𝑧𝑧𝑘𝑘+1 > 𝑧𝑧𝑘𝑘+2. Indeed, otherwise the value 

𝑧𝑧𝑘𝑘+1 will have the upper estimate 

 𝑧𝑧𝑘𝑘+1 ≤
𝐵𝐵𝑗𝑗𝑘𝑘+2−𝐴𝐴𝑗𝑗𝑘𝑘+1
𝑗𝑗𝑘𝑘+2−𝑗𝑗𝑘𝑘+1

. (15) 

The inequalities (14) and (15) contradict the inequality (13) if the number k is changed by 𝑘𝑘 + 1. So 

the inequality 𝑧𝑧𝑘𝑘+1 > 𝑧𝑧𝑘𝑘+2 is valid and the value 𝑧𝑧𝑘𝑘+2 will have the upper estimate 
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 𝑧𝑧𝑘𝑘+2 ≤  
  𝐵𝐵𝑗𝑗𝑘𝑘+2−𝐴𝐴𝑗𝑗𝑘𝑘+1
𝑗𝑗𝑘𝑘+2−𝑗𝑗𝑘𝑘+1

. (16) 

Continuing this process step by step we’ll reach the subset 𝐽𝐽𝑘𝑘+𝑚𝑚−2,𝑘𝑘+𝑚𝑚−1. Assuming number m (and 

𝑚𝑚 − 2) be even (the case when m be odd can be considered by the same way) we’ll have 𝑀𝑀𝑗𝑗𝑘𝑘+𝑚𝑚−2 =

 𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚−2 ,  𝑀𝑀𝑗𝑗𝑘𝑘+𝑚𝑚−1 =  𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚−1 , and the following lower estimate for 𝑧𝑧𝑘𝑘+𝑚𝑚−1: 

 𝑧𝑧𝑘𝑘+𝑚𝑚−1 ≥  
  𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚−1−𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚−3
𝑗𝑗𝑘𝑘+𝑚𝑚−1−𝑗𝑗𝑘𝑘+𝑚𝑚−3

. (17) 

At the subset  𝐽𝐽𝑘𝑘+𝑚𝑚−1,𝑘𝑘+𝑚𝑚  we have 𝑥𝑥𝑖𝑖 =  𝑧𝑧𝑘𝑘+𝑚𝑚−1 = const, therefore this value can be evaluated in 

accordance with (7): 

 
  𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚 −𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚−1
𝑗𝑗𝑘𝑘+𝑚𝑚−𝑗𝑗𝑘𝑘+𝑚𝑚−1

 ≤ 𝑧𝑧𝑘𝑘+𝑚𝑚−1  ≤  
𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚 −𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚−1
𝑗𝑗𝑘𝑘+𝑚𝑚−𝑗𝑗𝑘𝑘+𝑚𝑚−1

. (18) 

Combining estimates (17) and (18) we’ll receive:  

 
  𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚−1−𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚−2
𝑗𝑗𝑘𝑘+𝑚𝑚−1−𝑗𝑗𝑘𝑘+𝑚𝑚−2

 ≤ 𝑧𝑧𝑘𝑘+𝑚𝑚−1  ≤  
𝐵𝐵𝑗𝑗𝑘𝑘+𝑚𝑚 −𝐴𝐴𝑗𝑗𝑘𝑘+𝑚𝑚−1
𝑗𝑗𝑘𝑘+𝑚𝑚−𝑗𝑗𝑘𝑘+𝑚𝑚−1

. (19) 

It’s not difficult to see that the last inequality contradicts the inequality (13) with replacing k by 

𝑘𝑘 +𝑚𝑚 − 1. So our assumption about a vector having only (𝑚𝑚 − 1) changes at a subset of the length 

(𝑚𝑚 + 1) is not right. The lemma is proved.  

The assertion of the theorem results from the assertion of the lemma, because the set 𝐽𝐽0,𝑞𝑞+1 =

{1,2, …𝑛𝑛} is a particular case of the set 𝐽𝐽𝑘𝑘−1,𝑘𝑘+𝑚𝑚  with k = 1 and m = q.  

Applications 

The theorem 4 gives the lower bound of the number of changes for any feasible vector 𝑋𝑋 ∈ 𝐷𝐷. A 

heuristic algorithm to calculate plans having the number of changes equal or close to the lower bound is 

elaborated (presented below).  

Step 1. Initial data: n is the dimension of problem, 𝐴𝐴𝑖𝑖 < 𝐵𝐵𝑖𝑖 , 𝑖𝑖 = 1, 𝑛𝑛 − 1���������� are the lower and upper 

constraints, 𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛 , 𝐶𝐶 = 0, 𝐾𝐾 = 0. 

Step 2. Calculation 𝑥𝑥𝑖𝑖(𝐴𝐴) = 𝐴𝐴𝑖𝑖
𝑖𝑖 

 and   𝑥𝑥𝑖𝑖(𝐵𝐵) = 𝐵𝐵𝑖𝑖
𝑖𝑖 

, 𝑖𝑖 = 1, 𝑛𝑛�����. 

Step 3. Comparison: 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐴𝐴) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 1, 𝑛𝑛����� if no then go to 5. 

Step 4. For 𝑖𝑖 = 𝐾𝐾 + 1, 𝑛𝑛���������� the family of solutions has the following form: 

𝑥𝑥𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐴𝐴) + �𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐵𝐵)   − 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐴𝐴)�𝑡𝑡,   𝑡𝑡 ∊ [0,1], END. 
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Step 5. Find such a number 𝑘𝑘 that satisfies the inequalities 

𝑥𝑥(𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐴𝐴) ≤ 𝑥𝑥(𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 1, 𝑘𝑘�����, but  𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐴𝐴) > 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 1, 𝑘𝑘 + 1����������.  

Step 6. Calculation 𝐴𝐴 = 𝑘𝑘𝑘𝑘(𝐴𝐴), 𝐵𝐵 = 𝑘𝑘𝑘𝑘(𝐵𝐵).  

Step 7. Calculation 𝑦𝑦𝑖𝑖(𝐴𝐴) = 𝐴𝐴𝑖𝑖−𝐴𝐴
𝑖𝑖−𝑘𝑘

, 𝑦𝑦𝑖𝑖(𝐵𝐵) = 𝐵𝐵𝑖𝑖−𝐴𝐴
𝑖𝑖−𝑘𝑘

, 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛����������. 

Step 8. Comparison: (𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐴𝐴) ≤ 𝑦𝑦(𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛���������� ; if no then go to 11. 

Step.9. Comparison: 𝐾𝐾 = 0, if no then go to 25.  

Step 10. The family of solutions has the following form: 

𝑥𝑥𝑖𝑖 = 𝑥𝑥(𝐴𝐴), for 𝑖𝑖 = 1, 𝑘𝑘�����,  

𝑥𝑥𝑖𝑖 = 𝑦𝑦(𝐴𝐴) + (𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴))𝑇𝑇,   𝑇𝑇 ∊ [0,1], for 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛����������, END. 

Step 11. Calculation 𝑧𝑧𝑖𝑖(𝐴𝐴) = 𝐴𝐴𝑖𝑖−𝐵𝐵
𝑖𝑖−𝑘𝑘

, 𝑧𝑧𝑖𝑖(𝐵𝐵) = 𝐵𝐵𝑖𝑖−𝐵𝐵
𝑖𝑖−𝑘𝑘

, 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛���������� . 

Step 12. Comparison: 𝑧𝑧(𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑖𝑖(𝐴𝐴) ≤ 𝑧𝑧(𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛����������; if no then go to 15.  

Step 13. Comparison: 𝐾𝐾 = 0, if no then go to 26. 

Step 14. The family of solutions has the following form: 

𝑥𝑥𝑖𝑖 = 𝑥𝑥(𝐵𝐵), for  𝑖𝑖 = 1, 𝑘𝑘�����,  

𝑥𝑥𝑖𝑖 = 𝑧𝑧(𝐴𝐴) + (𝑧𝑧(𝐵𝐵) − 𝑧𝑧(𝐴𝐴))𝑇𝑇,   𝑇𝑇 ∊ [0,1], for  𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛���������� , END. 

Step 15. Find such a number 𝑚𝑚 that satisfies the inequalities 

𝑦𝑦(𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐴𝐴) ≤ 𝑦𝑦(𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1,𝑚𝑚�����������,  

but  𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐴𝐴) > 𝑚𝑚𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1,𝑚𝑚 + 1����������������.  

Step 16. Determine such numbers J1 and J2 that 𝑦𝑦𝐽𝐽1(𝐴𝐴) = 𝑦𝑦(𝐴𝐴) , 𝑦𝑦𝐽𝐽2(𝐵𝐵) = 𝑦𝑦(𝐵𝐵) . 

Step 17. Find such a number 𝑝𝑝 that satisfies the inequalities 

𝑧𝑧(𝐴𝐴) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑖𝑖(𝐴𝐴) ≤ 𝑧𝑧(𝐵𝐵) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1, 𝑝𝑝,�����������  

but  𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑖𝑖(𝐴𝐴) > 𝑚𝑚𝑚𝑚𝑛𝑛𝑧𝑧𝑖𝑖(𝐵𝐵), 𝑖𝑖 = 𝑘𝑘 + 1, 𝑝𝑝 + 1���������������.  

Step 18. Determine such numbers J3 and J4 that 𝑧𝑧𝐽𝐽3(𝐴𝐴) = 𝑧𝑧(𝐴𝐴), 𝑧𝑧𝐽𝐽4(𝐵𝐵) = 𝑧𝑧(𝐵𝐵) . 

Step 19. Comparison:   m < p,   if no then go to 21. 

Step 20. 𝑥𝑥𝑖𝑖 = 𝐵𝐵−𝐶𝐶
𝑘𝑘−𝐾𝐾

, 𝑖𝑖 = 𝐾𝐾 + 1, 𝑘𝑘����������;  𝐾𝐾 = 𝑘𝑘, 𝐶𝐶 = 𝐵𝐵, 𝐴𝐴 = 𝐵𝐵 + (𝑝𝑝 − 𝑘𝑘)𝑧𝑧(𝐴𝐴), 𝐵𝐵 = 𝐵𝐵 + (𝑝𝑝 − 𝑘𝑘)𝑧𝑧(𝐵𝐵); 𝑘𝑘 =

𝑝𝑝, go to 7. 

Step 21. Comparison: 𝑚𝑚 = 𝑝𝑝,  if no then go to 24. 

Step 22. Comparison:   J1<J2, if no then go to 24. 

Step 23. 𝑥𝑥𝑖𝑖 = 𝐵𝐵−𝐶𝐶
𝑘𝑘−𝐾𝐾

, 𝑖𝑖 = 𝐾𝐾 + 1, 𝑘𝑘����������;  𝐾𝐾 = 𝑘𝑘, 𝐶𝐶 = 𝐵𝐵, 𝐴𝐴 = 𝐵𝐵 + (𝑚𝑚 − 𝑘𝑘)𝑧𝑧(𝐴𝐴), 𝐵𝐵 = 𝐵𝐵 + (𝑚𝑚 − 𝑘𝑘)𝑧𝑧(𝐵𝐵); 𝑘𝑘 =
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𝑚𝑚, go to 7. 

Step 24. 𝑥𝑥𝑖𝑖 = 𝐴𝐴−𝐶𝐶
𝑘𝑘−𝐾𝐾

, 𝑖𝑖 = 𝐾𝐾 + 1, 𝑘𝑘����������;  𝐾𝐾 = 𝑘𝑘, 𝐶𝐶 = 𝐴𝐴, 𝐴𝐴 = 𝐴𝐴 + (𝑚𝑚 − 𝑘𝑘)𝑦𝑦(𝐴𝐴), 𝐵𝐵 = 𝐴𝐴 + (𝑚𝑚 − 𝑘𝑘)𝑦𝑦(𝐵𝐵); 𝑘𝑘 =

𝑚𝑚, go to 7. 

Step 25.  𝑥𝑥𝑖𝑖 = 𝐴𝐴−𝐶𝐶
𝑘𝑘−𝐾𝐾

, 𝑖𝑖 = 𝐾𝐾 + 1, 𝑘𝑘����������; 

𝑥𝑥𝑖𝑖 = 𝑦𝑦(𝐴𝐴) + (𝑦𝑦(𝐵𝐵) − 𝑦𝑦(𝐴𝐴))𝑇𝑇,   𝑇𝑇 ∊ [0,1],  𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛����������, END. 

Step 26. 𝑥𝑥𝑖𝑖 = 𝐵𝐵−𝐶𝐶
𝑘𝑘−𝐾𝐾

, 𝑖𝑖 = 𝐾𝐾 + 1, 𝑘𝑘����������; 

𝑥𝑥𝑖𝑖 = 𝑧𝑧(𝐴𝐴) + (𝑧𝑧(𝐵𝐵) − 𝑧𝑧(𝐴𝐴))𝑇𝑇,   𝑇𝑇 ∊ [0,1], 𝑖𝑖 = 𝑘𝑘 + 1, 𝑛𝑛����������, END. 

Example 1: The initial sequence is 𝑃𝑃𝑖𝑖 = 6,2,2,3,2,5,7,6,11,6,5,10,11,10,12,12,3,3,2,2,  n =20, 

𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛 = 120. The volume of the stock is equal to 9, so the set 𝐷𝐷 is determined by the lower and 

upper constraints: 

𝐴𝐴𝑖𝑖: -3,-1,1, 4, 6, 11, 18,24,32,41,46,56,67,77,89,101,104,107,109.  

𝐵𝐵𝑖𝑖:  6, 8,10,13,15,20,27,33, 44,50,55,65,76,86,98,110,113,116,118.  

The active constraints are: 𝐵𝐵5 = 15,  𝐵𝐵6 = 20, 𝐵𝐵8 = 33,  𝐵𝐵11 = 55, 𝐴𝐴16 = 101.  So the optimal 

vector 𝑋𝑋0 = (3,3,3,3,3; 5; 6.5,6.5; 22/3,22/3,22/3; 9.2,9.2,9.2,9.2,9.2; 4.75,4.75,4.75,4.75) has 5 changes 

of its coordinates. We choose the following active constraints: 𝑗𝑗1 = 11,  𝐵𝐵11 = 55;  𝑗𝑗2  = 16, 𝐴𝐴16 = 101. 

Designating  𝑗𝑗 0= 0, 𝐴𝐴0 = 0;  𝑗𝑗3  = 20, 𝐵𝐵20 = 120; we’ll receive: 

𝑦𝑦1 = 55−0
11−0

= 5,   𝑦𝑦2 = 101−55
16−11

= 9.2 ,  𝑦𝑦3 = 120−101
20−16

= 4.75. 

All assumptions of the theorem 4 are satisfied, so the lower bound of changes for any vector 𝑋𝑋 ∈ 𝐷𝐷 

is equal to 2. The algorithm presented above gives the family of vectors with 2 changes: 

  𝑥𝑥𝑖𝑖 = 3, 𝑖𝑖 = 1,8�����⃗ ; 𝑥𝑥𝑖𝑖 = 9 5
8

+ 19
72
𝑡𝑡, 𝑖𝑖 = 9,17��������⃗ ; 𝑥𝑥𝑖𝑖 = 3 1

8
 - 19

24
𝑡𝑡, 𝑖𝑖 = 18,20�����������⃗ ,0 ≤ 𝑡𝑡 ≤ 1. 

Example 2: The initial sequence is 𝑃𝑃𝑖𝑖 = 4,3,2,5,4,8,7,10,6,6,2,3,6,3,4,6,8,9,8,6,12,14,13,16,10, n 

= 25, 𝐴𝐴𝑛𝑛 = 𝐵𝐵𝑛𝑛 = 175. The volume of the stock is equal to 5, so the set 𝐷𝐷 is determined by the lower 

and upper constraints: 

  𝐴𝐴𝑖𝑖 : - 1,2,4,9, 13,21,28,38,44,50,52,55,61,64,68,74,82,91, 99, 105,117,131,144,160. 

  𝐵𝐵𝑖𝑖: 4, 7,9,14,18,26,33,43,49,55,57,60,66,69,73,79,87,96,104,110,122,136,149,165.  
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The active constraints are: 𝐵𝐵3 = 9, 𝐵𝐵5 = 18, 𝐴𝐴8 = 38, 𝐴𝐴10 = 50, 𝐵𝐵15 = 73, 𝐵𝐵16 = 79, 𝐵𝐵20 =

110, 𝐵𝐵21 = 122. The optimal vector 𝑋𝑋0 = (3,3,3; 4.5,4.5; 20/3,20/3,20/3; 6,6; 4.6,4.6,4.6,4.6,4.6; 6; 

7.75,7.75,7.75,7.75; 12; 13.25,13.25,13.25,13.25) has 8 changes of its coordinates. We take the following 

active constraints: 

𝑗𝑗1 = 5,   𝐵𝐵5 = 18,  𝑗𝑗2  = 10, 𝐴𝐴10 = 50; 𝑗𝑗3 = 20,𝐵𝐵20 = 110. 

Designating  𝑗𝑗 0= 0, 𝐴𝐴0 = 0,  𝑗𝑗4  = 25, 𝐴𝐴25 = 175, we’ll receive: 

𝑦𝑦1 = 18−0
5−0

= 3.6, 𝑦𝑦2 = 50−18
10−5

= 6.4, 𝑦𝑦3 = 110−50
20−10

= 6, 𝑦𝑦4 = 175−110
25−20

= 13.   

All assumptions of the theorem 4 are satisfied, so the lower bound of changes for any vector 𝑋𝑋 ∈ 𝐷𝐷 

is equal to 3. The algorithm presented above gives the family of vectors with 4 changes: 𝑋𝑋∗ = (3,3,3,3,3; 

7 2
3

, 7 2
3

, 7 2
3

, 7 2
3

, 7 2
3

;  2 14
15

, 2 14
15

, 2 14
15

, 2 14
15

, 2 14
15

;  8 1
6

+ 7
30
𝑡𝑡, 8 1

6
+ 7

30
𝑡𝑡, 8 1

6
+ 7

30
𝑡𝑡, 8 1

6
+ 7

30
𝑡𝑡, 8 1

6
+ 7

30
𝑡𝑡, 8 1

6
+

7
30
𝑡𝑡;  14.5 − 7

20
t, 14.5 − 7

20
t, 14.5 − 7

20
t, 14.5 − 7

20
t), 0 ≤ 𝑡𝑡 ≤ 1.  

Conclusions 

Two linked problem of optimization subject to two-sided constraints are considered.  

For the first problem of optimization of convex separable function of many variables simple 

necessary and sufficient conditions are received. The theorem 2 gives the necessary and sufficient 

conditions for the optimal vector to be nonnegative. The theorem 3 gives the possibility to determine in 

advance all active constraints and implies the decomposition method to find optimal vector. This method 

allows solving problems with rather big number of variables. 

The theorem 4 gives the method to estimate the least number of changes in components’ values of 

any feasible vector. In the particular case when lower and upper active constraints strictly follow one 

another the optimal vector for the first problem coincides with one of optimal vectors for the second 

problem. The examples above demonstrate a certain effectiveness of suggested models of rhythmical 

production and methods of their solution.  

References 

[1]. Savitzky and M.J.E.Golay, Smoothing and differentiation of data by simplest least squares procedures, 

Analytical Chemistry 36 (1964) 1627-1639. 

 



Two Problems of Rhythmical Manufacturing Process 713 

[2]. Robert Goodell Brown, Smoothing, Forecasting and Prediction of Discrete Time Series. Dover Publications, 

2004. 

[3]. Brockwell, Peter J., and Richard A. Davis, Time Series: Theory and Methods, 2nd edition, Springer,2009. 

[4]. R.Calaba, Leigh Tesfatsion, Exact sequential filtering, smoothing and prediction for nonlinear systems, 

Nonlinear Analysis: Theory, Methods & Applications, 12 (6) (1988) 599-615. 

[5]. Hiroyuki Kano, Hiroyuki Fujioka, Clyde F. Martin, Optimal smoothing and interpolating splines with 

constraints, Applied Mathematics and Computation, 218 (5) (2011) 1831-1844. 

[6]. Savelyev V.P., Fokina V.N. (1999). On optimal Rhythmical Production. Final Program and Abstracts of the 

Sixth SIAM Conference on Optimization, Atlanta, p.137. 

[7]. Savelyev V.P. (2007). Optimization of work balancing and minimizing changes of production intensity. 

Vestnik NNGU, № 4, pp.115-119. 

[8]. Savelyev V.P., Borovkov A.A.(2013) The Lower Bound of Changes in Production Operations. Proceedings 

of the International Conference “Numerical Computations: Theory and Algorithms”. 

[9]. Nocedal, Jorge, Wright, Stephen J., Numerical Optimization (2nd edition), ISBN 978-387-30303-1, Berlin, 

New York: Springer-Verlag, 2006. 

 

 

Published: Volume 2016, Issue 11 / November 25, 2016 

 


