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Abstract 

The contribution deals with the analysis and application of the competing risks model. First, the 

problem of identifiability of marginal and joint distributions of competing random variables is discussed. 

Then, the notion of copula is recalled and used to express the dependence in the competing risks scheme. 

Copula model is then utilized to the analysis of times of scoring the first goal in a football (soccer) 

match. It is assumed that competing latent times are exponentially distributed with parameters 

depending on attack and defence strengths of teams, while their mutual dependence is described with 

the aid of a conveniently chosen copula ensuring the model identifiability. As a real example the data 

from the season 2014-2015 of the Czech premier league (called Synot League) are analyzed. It is shown 

that the correlation in the framework of proposed model is, as a rule, negative, and its value is related to 

the first goal importance. The outcomes of analysis are discussed both from theoretical and practical 

point of view. 
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1. Introduction 

The interest in the problem of competing risks dates back to 70-ties of the last century. It arises often 

in the field of survival analysis, namely in reliability, biostatistics and medical studies, simultaneously it is 

also studied in demography, labor statistics, insurance, and in econometrics generally. From the beginning 

it was revealed that in the competing risks setting the background model may not be identifiable. A proof 

and an example of this phenomenon is given in Tsiatis (1975), some instances of identifiable (or not) 
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models are presented in Basu and Ghosh (1978). In these classical studies the notion of copula has not 

been used yet. Just later it was recognized that the use of copula for multi-dimensional continuous 

distribution can lead to a ’nice’ closed form of the model.  

In the present contribution we shall apply the approach to the analysis of distribution of time to the 

first scored goal in a football (soccer) match. Consequently, we shall deal with continuous-type 

distributions of random times and with the scheme of competing risks of two random variables, two latent 

times to scoring the first goal of two teams. The starting point will be a basic probabilistic model for final 

score of a football match proposed for instance in Maher (1982). It consists of two conditionally 

independent Poisson random variables. It means that they are dependent just through shared parameters or 

covariates. More flexible models are obtained by generalizations, for instance the distribution of number 

of scored goals can be inflated to cover better certain more frequent results. Another generalization can 

consist in considering changes or/and a time development of model parameters as well as covariates 

during the match (see for instance Dixon and Robinson, 1998, or Volf, 2009), in such a way a model based 

on random birth process or on time-continuous counting process scheme is obtained. The present 

contribution deals with another aspect of basic model improvement, namely with models considering an 

explicit form of dependence of both teams scoring distributions. Let us mention here at least two relevant 

papers. Thus, in Karlis and Ntzoufras (2003) a special case of bivariate Poisson distribution was employed. 

In the same context, McHale and Scarf (2011) have described the dependence with the aid of a copula 

model. Interesting is the comparison of conclusions of both approaches. While the correlation in the 

former model is non-negative (by definition), the latter paper concludes that the correlation is negative and 

is absolutely larger in more competitive matches. It has to be also said that the use of copula in discrete 

distribution models is not easy technically (and then computationally), because marginal distribution 

functions are as a rule expressed by sums of point probabilities, not having a reasonably closed form. In 

this aspect the present paper differs, it analyzes continuous random variables, namely the times.  

The outline of the paper is the following: The next section recalls the scheme of competing risks and 

the problem of identifiability. Then, in Section 3, a copula model is formulated and the way of its 

application is proposed. A counter-example of a non-identifiable case is presented, too. As an alternative, a 

model based on Gauss copula is considered, later it is used to support the results of real data study. Section 

4 then contains a real example, namely the analysis of data from the 2014-2015 season of Czech "Synot 

League" (the premier football league in the Czech Republic). The results are discussed, the impact of the 

first goal to the final match result is examined, too. 
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2. Competing Risks Model 

The competing risks model assumes that certain event (e. g. a failure of a device) can be caused by K 

different reasons. Such a situation is then modeled by K (possibly dependent) random variables (random 

times, as a rule) 1jT j K, = ,..., , sometimes accompanied by a variable C  of random right censoring. 

C  is then independent of all jT . Let 1 1 1( ) ( )K K K KF t t P T t T t, ..., = > ,..., >  be the joint survival 

function of { }jT .  However, instead the ‘net’ times jT  we standardly observe just ’crude’ data 

(sometimes called also ’the identified minimum’) 1min( )KZ T T C= ,..., ,  and the indicator jδ =  if 

0jZ T δ= , =  if Z C= .  

The data structure described above allows a direct estimation of the distribution of 

1min( )KZ T T= ,..., , for instance its survival function ( ) ( ) ( )KS t P Z t F t t= > = ,..., . Further, we can 

estimate so called incidence densities  

 1
1

( )( ) ( ) ( )K K
j K

j

F t tf t dP Z t j t t t
t

δ∗ ∂ ,...,
= = , = = − | = ... = = ,

∂
 

and also their integrals, cumulative incidence functions  

 
0

( ) ( ) ( )
t

j jF t f s ds P Z t jδ∗ ∗= = ≤ , = .∫  

Notice that lim ( ) ( ) 1jF t P jδ∗ = = <  if t → ∞ ,
1

( ) 1 ( )K
jj

S t F t∗
=

= − ∑ .  

Cumulative incidence functions, often called also the crude distribution functions, are estimable 

consistently by standard survival analysis methods, see for instance Lin (1997).  

However, in general, from data ( ) 1i iZ i Nδ, , = , ,  it is not possible to identify neither marginal 

nor joint distribution of { }jT . A. Tsiatis (1975) has shown that for arbitrary joint model we can find a 

model with independent components having the same incidences, i.e. we cannot distinguish the models. 

Namely, this ’independent’ model is given by cause-specific hazard functions ( ) ( ) ( )j jh t f t S t∗ ∗= / .  

The situation can be better in a regression case, because the covariates provide an additional 

information, especially when their structure is rich enough. There are numerous results showing conditions 
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for full model identifiability, let us mention here Heckman and Honoré (1989) and their proof of 

identifiability in the Cox or the AFT model cases. Later on, Lee (2006) has studied more general 

transformation models of regression. However, all these studies rely on an assumption that the dependence 

structure does not change with covariates. If it is not the case, the problem of identifiability arises anew.  

As a consequence of the Tsiatis (1975) result, in competing risks models without regressors it is 

necessary to make certain functional form assumptions about the type of both marginal and joint 

distribution in order to identify them. Several such cases are studied in Basu and Ghosh (1978) and in 

some other papers. More recent results on identifiability can be found for example in Schwarz et al (2013) 

dealing with non-parametric setting, or in Escarela and Carriere (2003) considering Frank copula and 

parametric models. 

3. Copula Model for Competing Risks Distribution 

In the sequel we shall consider just 2 competing events, i.e. random variables S T,  and data 

( ) 1 2 0i i i i iZ min S T C δ= , , , = , , . Then the notion of copula offers a way how to model bivariate 

distributions, namely the joint distribution function 2 ( )F s t,  of S T, :  

 2 ( ) ( ( ) ( ) )S TF s t C F s F t θ, = , , ,  (1) 

where S TF F,  are marginal distribution functions of ( )S T C u v θ, , , ,  is a copula, i.e. a two-dimensional 

distribution function on 2[0 1], , with uniformly on [0 1],  distributed marginals U V, , θ  is a copula 

parameter. The parameter is, as a rule, uniquely connected with correlation of U V, , hence also with 

correlation of S T, . We can connect also density functions. Let ( )c u v,  be the joint density of ( )U V, , 

then  

 2 ( )( )
( ) ( )S T

f s tc u v
f s f t

,
, = ,

⋅
 (2) 

with ( ) ( )S Tu F s v F t= , = .  

Sometimes we may prefer to use a copula as a "survival copula" for modeling the joint survival 
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function 2 ( )F s t,  of S T, :  

 2 ( ) ( ) ( ( ) ( ) )S TF s t P S s T t C F s F t θ, = > , > = , , ,  

where S TF F,  are marginal survival functions of S T, . It is seen that the use of copula allows to model 

the dependence structure separately from the analysis of marginal distributions. From this point of view, 

the identifiability of the copula (and its parameter) and of marginal distributions can be considered as two 

separate steps.  

Zheng and Klein (1995) proved that when the copula is known, the marginal distributions are 

estimable consistently (and then the joint distribution, too, from (1)), even in a non-parametric (so that 

quite general) setting. However, in general, the value of θ  has to be known. The problem of proper 

copula choice is analyzed in a set of papers, let us mention here Kaishev et al (2007) comparing 

performance of several copula types. A common agreement is that the knowledge (or a good estimate) of 

parameter θ  is much more crucial for correct model of joint distribution. As a consequence, because the 

knowledge of copula type is still an unrealistic supposition, we can try to use certain sufficiently flexible 

class of copulas, as approximation, and concentrate to reliable estimation of parameters.  

3.1. Copula Based on Tsiatis’ Example 

Let us return to the example of Tsiatis (1975) considering 2K =  random variables S T, , both with 

exponential distribution, and the following marginal and joint survival functions,  

 2( ) ( ) ( )s t s t st
S Ts e t e s t eF F F

λ µ λ µ γ− − − − −= , = , , = .  

Hence, 2
2( ) ( ) exp( )S t t t t t tF λ µ γ= , = − − − . Corresponding cause-specific hazard rates and their 

integrals are  

 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2S T S Th t t h t t H t t t H t t tγ γλ γ µ γ λ µ∗ ∗ ∗ ∗= + , = + , = + , = + .  

It follows that ( ) ( ( ) ( ))S TS t exp H t H t∗ ∗ ∗= − +  is the same as ( )S t  above, which means that 

independent random variables with marginal survival functions  

 
2 2

2 2( ) ( )s s t t
S Ts e t eG G

γ γλ µ− − − −= , =  

yield the same competing risk scheme. Notice, however, that ’true’ marginal distributions are exponential 

while derived independent distributions are not. It gives a chance that, when the type of marginals is 
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assumed, they (and parameter γ , too) can be estimated, uniquely. Tsiatis’ example actually uses the 

following copula  

 ( ) exp( ln ln )C u v u v u vθ, = ⋅ ⋅ − ⋅ ⋅ ,  (3) 

as survival copula connecting two exponential survival functions. Its parameter 0θ ≥ , corresponding 

correlation ( ) 0U Vρ , ≤ , 0θ =  means independence of U V, . In fact (3) belongs to a set of 

Archimedean copulas and is known as the Barnett copula. The parameters are connected in the following 

way: γ θ λ µ= ⋅ ⋅ . Figure 1 shows the dependence of correlation on parameters. The identifiability of 

model consisting of Barnett copula (3) and exponential marginal distributions has been proved already in 

Basu and Ghosh (1978). In Appendix we offer an alternative proof showing the uniqueness of maximum 

likelihood estimates.  

 

Figure 1. Dependence of ( )U Vρ ,  on parameter θ  and ( )S Tρ ,  on γ , when ( )S Exp λ
, 

( )T Exp µ
. 
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3.2. Other Forms of Two-Dimensional Exponential Distribution 

We shall now show that the identifiability need not hold for other selection of copula type. For 

instance, let us consider the Gumbel copula  

 1( ) exp{ [( ln ) ( ln ) ] }C u v u vθ θ θ/, = − − + − ,  

with 1θ ≥ . Here ( ) 0U Vρ , ≥ , 1θ =  corresponds to independence.  

Let again ( )S Exp λ , ( )T Exp µ , then  

 1 1
2 ( ) exp{ [( ) ( ) ] } ( ) exp{ [ ] }F s t s t i e S z zθ θ θ θ θ θλ µ λ µ/ /, = − + , . . = − + ⋅ ,  

 1 1 1 1 1 12 1( ) ( ) [( ) ] ( )( )S
s t z

Ff z S z z z S z
s

θ θ θ θ θ θ θ θ θ θλ µ θ λ λ µ λ
θ

∗ / − − − / −

| = =

∂= − = + = + ⋅ ,
∂

 

similarly 1 1( ) ( )( )Tf z S z θ θ θ θλ µ µ∗ / −= + ⋅ . After re-parametrization  

 1 1 1 1( ) ( )A Bθ θ θ θα λ β µ α β α α β β/ − / −= , = , = + ⋅ , = + ⋅ ,  

we obtain that  

 ( ) exp{ ( ) } ( ) ( ) ( ) ( )S TS z A B z f z S z A f z S z B∗ ∗= − + ⋅ , = ⋅ , = ⋅ .  

Hence, the model is determined fully by just two parameters, initial model is over-parametrized, we 

cannot estimate parameters λ µ θ, ,  uniquely. Notice also that A B,  are the intensities of independent 

exponential distributions forming independent model forecasted by Tsiatis.  

Another often used model for bivariate exponential distribution is the Marshall–Olkin model: Let 

1 2 3X X X, ,  be independent exponential random variables with parameters 1 2 3λ λ λ, , , respectively, set 

1 3min( )S X X= ,  and 2 3min( )T X X= , . Then marginal distributions of S T,  are also exponential, 

with parameters 1 3λ λ+ , 2 3λ λ+ , resp., their correlation equals 3 1 2 3( )λ λ λ λ/ + + . However, as 

3 1 2 3( ) ( )P S T λ λ λ λ= = / + + , too, the joint distribution of S T,  is not of continuous type and, 

therefore, is not convenient for our purposes. Let us note that this distribution is closely connected with 

bivariate Poisson model used for instance in Karlis and Ntzoufras (2003). 
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3.3. Gauss Copula 

There exists a large number of different copula functions, for instance a set of Archimedean copulas. 

Let us recall here another rather universal and flexible type, namely the Gauss copula. Let X Y,  be 

standard normal random variables (0 1)N ,  tied with (Pearson) correlation ( )X Yρ ρ= , . We denote 

φ ϕ,  univariate standard normal distribution function and density and by 2 2( ) ( )x y x yφ ϕ, , ,  

corresponding 2-dimensional functions. Then  

 1
2 2

1 1( ) exp{ }
22 1

x y xxϕ
π ρ

−′, = − Σ
−

 

with ( )x x y ′= ,  and the covariance matrix [1 1]ρ ρΣ = , ; , . If we define ( ) ( )U X V Yφ φ= , = , we 

obtain a 2-dimensional distribution on 2(0 1),  with the copula  

 1 1
2( ) ( ( ) ( ))C u v u vφ φ φ− −, = , .  (4) 

Naturally, ( ) ( )U V X Yρ ρ, ≠ ,  (though they are rather close, as a rule), while Spearman’s 

correlations coincide, namely SP SP( ) ( ) ( )X Y U V U Vρ ρ ρ, = , = , . As we are primary interested in the 

model for dependence of competing variables S T, , let us assume that their joint distribution function is 

given by Gauss copula (4),  

 1 1
2 2( ) ( ( ( )) ( ( )))S TF s t F s F tφ φ φ− −, = , ,  (5) 

and 1( ( ))SS F Xφ−= , 1( ( ))TT F Yφ−= . Again SP SP( ) ( )S T U Vρ ρ, = , , and “initial" ( )X Yρ ρ= ,  is 

the only parameter describing the dependence of S  and T . It, naturally, differs from ( )S Tρ , , however, 

all values ( )S Tρ ,  can be achieved by convenient choice of ( )X Yρ , . Let us remark here that the real 

dependence among S T,  can be much more complicated, nevertheless the use of Gauss copula offers 

here certain rather simple and sufficiently flexible (as regards the correlation) set of distributions.  

The identifiability of the model based on Gauss copula can be proved by the same arguments as used 

in Escarella and Carriere (2003), Sect. 3, for the case of Frank copula. Namely, as there exists a unique 
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monotone relationship between ( )S Tρ ,  and ρ  of copula, it is not possible to get the same competing 

risk scheme from two distinct models with marginals of the same parametric type.  

3.4. Estimation in Gauss Copula Model 

Provided the data are ( ) 1i iZ i Nδ, , = , , , the likelihood function then has the form  

 
[ 1] [ 2]

[ 0]
2 2 2

1

( ) ( ) ( )
i i

i

I IN
I

i

L s t s t s tF F Fs t

δ δ
δ

= =
=

=

∂ ∂   = − , ⋅ − , ⋅ , ,   ∂ ∂   
∏  

evaluated at is t Z= = , with 22( ) ( ) 1 ( ) ( ) ( )S Ts t P S s T t F s F t F s tF , = > , > = − − + , . From 

transformation (5) it follows that 2 2( ) ( )F s t x yφ, = ,  with 1( ( ))Sx F sφ −= , 1( ( ))Ty F tφ −= . Hence, 

when we put 1 1( ( )) ( ( ))i S i i T iX F Z Y F Zφ φ− −= , = , we obtain after some computation – integration of 

2-dimensional Gauss density 2 ( )x yϕ , , that  

 { } [ 1]2
1

1

( ) 1 ( 1 ) i
N I

S i i i
i

L f Z Y X
δ

φ ρ ρ
=

=

 = − ; , − ⋅ ∏  

 { } { }
[ 2] [ 0]2

1 2( ) 1 ( 1 ) 1 ( ) ( ) (i i
I I

T i i i S i T i i if Z X Y F Z F Z X Y
δ δφ ρ ρ φ

= = ⋅ − ; , − ⋅ − − + , ,   

where 2
1( )xφ µ σ; ,  denotes the distribution function of normal distribution 2( )N µ σ, , evaluated at x . 

Parameter ρ  is hidden in 1φ  and in 2φ . Distributions of S  and T  are present both explicitly and 

also implicitly, in transformed i iX Y, . It is seen that the problem of maximization is not an easy task and 

has to be solved by a convenient search procedure. It also means that confidence intervals for estimated 

parameters cannot be derived directly from the likelihood, we have to search other ways. The bootstrap 

method offers one of possibilities. Alternatively, Bayes credibility intervals can be obtained in the Bayes 

approach framework accompanied by the MCMC procedure. 
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Figure 2. Histogram of times of first goals (without 21 cases censored at 90-th minute). 

 

Final 

order 

Team  Score  Points 1-st goal 

scored 

Home 

obt. 

away 

scored 

 

obt. 

1 Plzen  70:24 72 12  3  11  3     

2 Sparta  57:20 67 9  6  9  4   

3 Jablonec 58:22  64 12  1  9  6   

4 Ml.Boleslav 43:34  46 11  4  5  8   

5 Pribram 40:45  43 11  4  5  7   

6 Dukla  34:40  41 7  5  3  10   

7 Teplice 41:37  38 8  5  7  7  

8 Bohemians 35:41  38 6  6  4  11  

9 Slovacko 43:46  37 8  7  6  8  

10 Jihlava 33:38 36 6  8  7  6  
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11 Slavia  40:45 34 9  6  7  7  

12 Liberec 39:43 33 5  7  6  8   

13 Ostrava 23:41 33 7  5  3  10  

14 Brno  34:45 33 6  8  2  12  

15 Hradec Kr. 26:52 25 6  6  4  11  

16 C.Budejovice 29:72 22 6  9  2  11  

Table 1. Brief statistics of 2014-15 season of Synot League. 

 

Team  α   β  a  b   

Plzen  0.9304  (0.4666) -1.7413 (1.7616) 2.5354  0.1753  

Sparta  0.3217  (0.6060) -0.8270 (0.8241) 1.3795  0.4374  

Jablonec 0.1667  (0.5588) -1.3309 (1.1298) 1.1814  0.2642  

Ml.Boleslav 0.7641 (0.5541) -0.1269 (0.6481) 2.1470  0.8808  

Pribram -0.0914 (0.6905) -0.5875 (0.7496) 0.9127  0.5557  

Dukla  -0.2924 (0.8051) 0.0885 (0.5798) 0.7465  1.0926  

Teplice -0.0239 (0.6220) -1.4007 (1.2831) 0.9764  0.2464  

Bohemians -1.4190 (1.4221) -0.4620 (0.6473) 0.2419  0.6300  

Slovacko 0.1708 (0.6473) -0.1054 (0.6114) 1.1862  0.9000  

Jihlava -0.2503 (0.7302) -0.6688 (0.7623) 0.7785  0.5123  

Slavia  0.2879 (0.5783) -0.5770 (0.7992) 1.3336  0.5616  

Liberec -0.5494 (0.8513) -0.1822 (0.6086) 0.5773  0.8335  

Ostrava -0.3784 (0.7783) -0.2759 (0.6293) 0.6850  0.7589  

Brno  -0.6535 (0.9155) 0.2373 (0.5233) 0.5202  1.2678  

Hradec Kr. -0.4139 (0.8232) -0.0117 (0.5760) 0.6611  0.9884  

C.Budejovice -0.0877 (0.9006) 0.4620 (0.4923) 0.9160  1.5873  

Table 2. Results: Estimated parameters ln lni i i ia bα β= , =  (with half-widths of approximate 95% conf. 

intervals in brackets), then i ia b, . 
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4. Application to the Time of First Goal 

We shall now use the competing risk model derived in Part 3.1 to modeling the time to first scored 

goal during a football match. Marginal variables are the latent times of 1-st goal of each team, however 

only the incidence of one (the first) of them is observed. Or, in the case of draw 0:0, we have censoring by 

a fixed value 90 minutes. Except statistical estimation of model parameters, we are interested in the 

following question: How dependent are these latent times to 1-st goal?  

In our study we shall use the data from the Czech Synot League, season 2014-15. 16 participating 

teams played together 240 matches (i.e. twice with each other, home and away). All observed times of first 

goals (219 cases) are displayed in Figure 2, 21 matches ended without goals. Figure 2 suggests that the 

times to first goals can be modeled via exponential distribution. The maximum likelihood estimate of its 

intensity parameter yields ˆ 0 0261λ = . ,  with 95% confidence interval (0 0228 0 0297). , . . It also means that 

the mean time to first goal was ˆ1 38λ/ 
 minutes. Table 1 shows the final order after the season, with 

some additional statistics, also concerning first goals. Namely, its right part contains number of matches in 

which the team scored or obtained the first goal (home or away). More information on the Czech football 

Synot league can be found on http://www.sport.cz/fotbal/synot-liga/#vysledky.  

As regards marginal models, the source was the standard model of Maher (1982). More specifically, 

each team ( )i  was characterized by its attack parameter ia  and defense parameter ib . Another 

parameter, h , denotes the advantage of home field. The sequence of scoring in a match between home 

team i  and away team j  is then described by two Poisson processes with intensities i ja b h⋅ ⋅ , j ia b⋅ , 

respectively. Consequently, the time to the 1-st goal arises from two competing exponential random 

variables  

 ( ) ( )ij i j ij j iS Exp a b h T Exp a b⋅ ⋅ , ⋅ .   

Further, it was assumed that their mutual dependence can be expressed via Tsiatis’ model described in 

Part 3.1. Notice also that in the present setting the teams parameters values are not given uniquely, that the 

parameters  i ja c b c⋅ , /  yield the same model, for any 0c > . The parameters are related to "time unit" 

100 minutes, one reason for it was also a better stability of numerical procedures. 
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4.1. Numerical Results 

We were solving the problem of the maximum likelihood estimation (MLE) of 34 parameters: i ia b,  

of 16 teams, home advantage parameter h , and γ  characterizing the dependence. It was assumed that 

both h  and γ  were the same for all couples of teams, i.e. in all matches. The results of the MLE of 

teams parameters are displayed in Table 2. For computational convenience, we estimated 

ln lni i i ia bα β= , = , also ln hδ = . The ML estimates of two common parameters (with half-widths of 

95% confidence intervals) were  

 ˆˆ ˆ0 6423(0 2048) exp( ) 1 9008 1 1700(0 1192)hδ δ γ= . . , = = . , = . . .  

The correlation in each particular match depends on teams parameters and on two common 

parameters h  and γ . Its value can be traced roughly from Figure 1, or computed from corresponding 

two-dimensional exponential model. It is possible to say that the first goal matters. For instance in the 

match of two leaders, Plzen and Sparta, numerical computation yielded ( ) 0 569S Tρ , = − . . Then, in a 

match of teams with rather poor attack and yet fair defence, as for instance Bohemians and Jihlava, 

obtained ( ) 0 800S Tρ , = − .  could be interpreted that the first goal was even more important. Further, the 

value of parameter 1 9h = .  indicated that the chance of home team to score first was about 
1 9 2 9 0 66. / . = . , while in reality from 219 first goals 129 were scored by home teams, 129/219 = 0.59. 

4.2. Discussion of Results 

Though, theoretically, the identification of underlying distributions, and therefore also the 

consistency of parameter estimates, is guaranteed (see Part 3.1), simulated experiments show rather slow 

convergence of estimates to ’true’ values. It is also seen that the confidence intervals for parameters 

(approximate, i.e. based on asymptotic normality of estimates) are rather wide, which is a natural 

consequence of rather large proportion of the number of parameters to the number of data (matches). 

Simultaneously, however, this follows from the fact that the log-likelihood function is rather flat.  

Though the following problem is not in the center of our attention, we still can provide a brief 

statistics concerning the impact of the first goal to final result. From 240 matches of the season 21 ended 

without goals. From remaining 219 matches there were 37 draws (other then 0:0), 116 home wins, 66 

away wins. In these 219 matches with goals in 156 cases the team scoring first was also the winner, in 26 
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cases the opposite had occurred (and 37 ended by draw). The proportion ˆ 156 219 0 7123p = / = .  is 

significantly larger than 0.5, approximate (asymptotic) 95% confidence interval for ’true’ proportion 

equals (0 6524 0 7723). , . . On the other hand, the chance to turn over the score after obtaining the first 

goal can be described by estimated proportion ˆ 26 219 0 1187q = / = . , which is significantly larger than 

zero, yielding 95% confidence interval (0 0759 0 1616). , . .  

It is worth to mention here some contributions devoted to the analysis of the first goal impact directly, 

as for example Nevo and Ritov (2013). Paper of Volf (2009) also contains a small simulation study 

analyzing probabilities of final results conditionally on the first goal author and time. 

4.3. Use of Gauss Copula 

Just in order to check and support the results of the preceding part, we repeated the analysis using the 

Gauss copula, in a way described in Parts 3.3. and 3.4, connecting two exponential distributions 

characterizing each match. Now, we estimated directly parameters i ia b h, ,  and ρ , the last two were 

common for all matches. Results, ML estimates of teams parameters, are displayed in Table 3, estimated 

parameter of home advantage was 1 7229h = . . It can be said that values are comparable to those of the 

preceding analysis. Further, optimal correlation estimate was 0 520ρ = − . . As the values maximizing the 

log-likelihood were found by a random search, we were not able to obtain reliable confidence intervals. 

While Barnett copula allows only for non-positive correlation, Gauss copula is more universal, it was 

another reason for using it for supporting the solution.  

Team  a   b   Team  a   b   
Plzen  2.5572  0.2838 Slovacko  1.1704  0.9205  

Sparta  1.5007  0.4857 Jihlava  0.9253  0.6620  

Jablonec 1.4321  0.3362 Slavia  1.3612  0.6721  

Ml.Boleslav 1.8877  0.7706 Liberec  0.6933  0.8550  

Pribram 1.0976  0.6171 Ostrava  0.6679  0.7775  

Dukla  0.7127  1.0347 Brno  0.5318  1.2938  

Teplice 1.1318  0.4710 Hradec Kr.  0.6817  1.0116  

Bohemians 0.5240  0.8343 C.Budejovice 0.8395  1.4094  

Table 3. Estimated parameters ia  and ib  in the model using Gauss copula. 
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In fact, in joint exponential distribution given through a copula, the resulting correlation of involved 

exponentially distributed variables does not depend on their parameters, it depends just on parameter of 

the copula. It concerns also the Gauss copula model. Thus, in our case, the value ( ) 0 520X Yρ , = − .  

leads to (computed numerically) ( ) 0 5027U Vρ , = − .  and ( ) 0 3775S Tρ , = − .  in each match. The 

explanation is seen easily from the formula for correlation. Namely, for two exponentially distributed 

random variables S T,  with parameters µ λ, , respectively, we shall obtain that 

( ) ( ) 1S T E S Tρ µ λ, = ⋅ ⋅ ⋅ − . Further  

 
1 1 1 1

0 0 0 0
( ) ( ) ( ) ( )ST S TE S T s t f ds dt F u F v c u v du dv

∞ ∞ − −⋅ = = , =∫ ∫ ∫ ∫  

 
1 1

0 0

1 (1 ) (1 ) ( )ln u ln v c u v du dv
µ λ

= − − , ,∫ ∫  

after substitution ( ) ( )S Tu F s v F t= , = , taking into account relation (2). It is seen that µ λ,  vanish from 

the expression for ( )S Tρ , .  

This property concerns, naturally, also to Barnett copula, however notice that in our approach using 

this copula the parameters µ λ,  were actually a part of copula parameter θ , because we concentrated to 

estimation of parameter γ θ µ λ= ⋅ ⋅ . Therefore, ( )S Tρ ,  depended on both. In such a way, we were 

actually using a set of Barnett copulas and it can be said that such a model is more flexible, than, for 

instance, the Gauss copula model presented above.  

5. Concluding Remarks 

We have studied the dependence of random variables – latent times of scoring the first goal in a 

football match, with the aid of the competing risks model. Achieved results lead to conclusion that the 

correlation is, as a rule, negative, and is absolutely larger in more competitive matches, i.e. the matches of 

teams with good defence and comparable attack abilities. This conclusion is thus in accord with results of 

McHale and Scarf (2011). It has to be pointed out that the teams parameters evaluated above concern just 

to stage of match up to the first goal. It can be expected that the team performance changes during the 

match and is related to actual score, elapsing time, and to other factors characterizing the match state. This 
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aspect is also reflected by more advanced models of score development, see again for instance Dixon and 

Robinson (1998), Volf (2009) and an overview of models provided there. Hence, the approach proposed in 

the present study can be extended to the analysis of times to next goals. Another generalization can 

consider different copula parameters for certain groups of matches or teams. 

Acknowledgement 

The research has been supported by the project No 13-14445S of the Czech Scientific Foundation. 

References 

[1]. Basu, A.P., Ghosh, J.K. (1978). Identifiability of the Multinormal and Other Distributions under Competing 

Risks Model. Journal of Multivariate Analysis, 8, 413-429.  

[2]. Dixon, M.J., Robinson, M.E. (1998). A birth process model for association football matches. The Statistician, 

47, 523-538.  

[3]. Escarela, G., Carriere, J.F. (2003). Fitting competing risks with an assumed copula. Statistical Methods in 

Medical Research, 12(4), 333-349.  

[4]. Heckman, J.J., Honoré, B.E. (1989). The identifiability of the competing risks model. Biometrika, 76, 325-330.  

[5]. Kaishev, V.K., Dimitrova, D.S., and Haberman, S. (2007). Modelling the joint distribution of competing risks 

survival times using copula functions. Insurance: Mathematics and Economics, 41, 339-361  

[6]. Karlis, D., Ntzoufras, I. (2003). Analysis of sports data by using bivariate Poisson models. J. R. Stat. Soc. Ser. 

D, 52, 381-394.  

[7]. Lee, S. (2006). Identifcation of a competing risks model with unknown transformations of latent failure times. 

Biometrika, 93, 996-1002.  

[8]. Lin, D.Y. (1997). Non-parametric inference for cumulative incidence functions in competing risks studies. 

Statistics in Medicine, 16, 901-910.  

[9]. Maher, M.J. (1982). Modelling association football scores. Stat. Neerl., 36, 109-118.  

[10]. McHale I., Scarf P.A. (2011). Modelling the dependence of goals scored by opposing teams in international 

soccer matches. Statistical Modelling, 11, 219-236.  

[11]. Nevo, D., Ritov, Y. (2013). Around the goal: examining the effect of the first goal on the second goal in soccer 

using survival analysis methods. Journal of Quantitative Analysis in Sports, 9, 165-177.  

[12]. Schwarz, M., Jongbloed, G., and Van Keilegom, I. (2013). On the identifiability of copulas in bivariate 

competing risks models. Canadian Journal of Statistics, 41, 291-303  

 



On Statistical Analysis of Competing Risks with Application to the Time of First Goal 622 

[13]. Tsiatis, A. (1975). A nonidentifiability aspects of the problem of competing risks. Proc. Nat. Acad. Sci. USA, 

72, 20-22.  

[14]. Volf, P. (2009). A random point process model for the score in sport matches. IMA Journal of Management 

Mathematics, 20, 121-131.  

[15]. Zheng, M., Klein, J.P. (1995). Estimates of marginal survival for dependent competing risks based on an 

assumed copula. Biometrika, 82, 127-138. 

 

Appendix 

We shall now prove that the case of competing risks with two exponential marginal distributions tied 

together by Barnett copula (2) is identifiable. Let us again consider random variables ( )S Exp λ , 

( )T Exp µ , and their joint survival function 2 ( ) s t stF s t e λ µ γ− − −, = , 0 0λ µ γ, > , ≥ . Hence, in the 

competing risks setting, 2
2( ) ( ) ( )S z F z z exp z z zλ µ γ= , = − − − , incidence densities are 

( ) ( ) ( )Sf z z S zλ γ∗ = + ⋅ , ( ) ( ) ( )Tf z z S zµ γ∗ = + ⋅ , and the likelihood, given data { 1 }i iz i Nδ, , = ,...,  is  

 [ 1] [ 2]

1

( ) ( ) ( )i i

N

i i i
i

L z z S zδ δλ γ µ γ= =

=

= + ⋅ + ⋅ .∏  

It will be shown that the model fulfils the regularity conditions. In particular, the 2-nd derivative of 

the log-likelihood is a negative definite matrix, therefore there exists unique maximum likelihood estimate 

of parameters λ µ γ, , . The log-likelihood and its first derivatives are:  

 2ln ln( ) [ 1] ln( ) [ 2] ( )l L z z z z zλ γ δ µ γ δ λ µ γ= = + ⋅ = + + ⋅ = − + + .  

 2[ 1] [ 2] [ 1] [ 2]
( ) ( ) ( ) ( )

l l lz z z z z
z z z z

δ δ δ δ
λ λ γ µ µ γ γ λ γ µ γ

∂ = ∂ = ∂ = =
= − , = − , = ⋅ + ⋅ − .

∂ + ∂ + ∂ + +
 

It is easy to show that expectations of the first derivatives equal zero, provided we take Z  as 

random variable having survival function ( )S z  with ’true’ λ µ γ, , :  

 
0 0 0 0

( ) ( ( )) ( ) ( ) 0
( )

Sf z dzlE z dS z S z dz S z dz
zλ λ γ

∗∞ ∞ ∞ ∞∂
= − − = − = ,

∂ +∫ ∫ ∫ ∫  
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the second term was obtained by the per-partes integration. Similarly, 0lE µ
∂
∂ = , too, and  

 2

0 0 0
( ) ( ) ( ( )) 0lE z S z dz z S z dz z dS z

γ
∞ ∞ ∞∂

= ⋅ + ⋅ − ⋅ − = ,
∂ ∫ ∫ ∫  

again after per-partes integration of the last term. As regards the second derivatives,  

 
2 2 2

2 2 2 2

[ 1] [ 2] 0
( ) ( )

l l l
z z

δ δ
λ λ γ µ µ γ µ λ

∂ = ∂ = ∂
= − , = − , = ,

∂ + ∂ + ∂ ∂
 

 
2 2

2 2

[ 1] [ 2]
( ) ( )

l lz z
z z

δ δ
λ γ λ γ µ γ µ γ
∂ = ∂ =

= − ⋅ , = − ⋅ ,
∂ ∂ + ∂ ∂ +

 

 
2

2 2
2 2 2

[ 1] [ 2]
( ) ( )

l z z
z z

δ δ
γ λ γ µ γ

∂ = =
= − ⋅ − ⋅ .

∂ + +
 

Again, it is easy to show that the matrix of 2-nd derivatives (let us denote it D ) is negative definite 

for all finite z λ µ γ, , , : Let 1 2 3( )c c c c ′= , ,  be arbitrary non-zero vector, then  

 2 2
1 2 1 32 2 2

[ 1] [ 2] [ 1]2
( ) ( ) ( )

c Dc c c c c z
z z z

δ δ δ
λ γ µ γ λ γ

= = =′ = − − − −
+ + +

 

 2 2 2
2 3 32 2 2

[ 2] [ 1] [ 2]2 { }
( ) ( ) ( )

c c z c z z
z z z

δ δ δ
µ γ λ γ µ γ

= = =
− − + =

+ + +
 

 2 23 31 2[ 1]{ } [ 2]{ } 0
( ) ( ) ( ) ( )

c z c zc c
z z z z

δ δ
λ γ λ γ µ γ µ γ

− = + − = + < .
+ + + +
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