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Abstract 

The possible dominance of basic assumption about underlying models on the analysis of data is of much 

concern. This study aimed develop a robust fitting procedure for one-way ANOVA models under 

adaption on the observed samples. Further investigation on Asymptotic Relative Efficiency (ARE) of 

this procedure and parametric F-test under class of continuous distributions was performed. 10,000 

simulations were carried out for a one-way ANOVA model with three levels for sample sizes 5, 10, 15, 

and 20. Intralevel correlation coefficient 0ρ =  was considered in the these simulations. The findings 

revealed that the parametric F-test for oneway ANOVA model performed better than the non-parametric 

Adaptive test proposed for symmetric and moderate tailed distributions and then in symmetric and light 

tailed distributions with ARE between 2% and 55%. However, the Adaptive test outperformed the 

F-test in symmetric and asymmetric with varying tail weights distributions with ARE between 4% and 

64%. Although, the F-test displayed superiority in efficiency in symmetric medium and light tailed 
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distributions, the Adaptive test was more efficient in more broader class of continuous distribution. 

Keywords: adaptive, selector statistic, simulation, non-parametric, continuous distribution, Asymptotic 

Relative Efficiency (ARE). 

1. Introduction 

Guass Markov Models (GMM) are widely used in many statistical application because of the nice 

properties possessed. ANOVA, is perhaps the most powerful statistical tool [3] and widely used model in 

the framework of GMM in application. It is a general method of analyzing data from designed 

experiments, whose objective is to test appropriate hypotheses about treatment means and to estimate 

them. The error terms are assumed to be normally distributed and in effect the responses are also normally 

distributed. The models are generally defined as: 

 ij ijy Cµ ε= + ∆ +  (1) 

where ijy  is the combined response samples, ijε  are independent and identically distributed with 

distribution 2(0 )N Iσ, , ∆  is the fixed effect parameters, C is the design matrix. 

However, if the normal distribution is extreme with reference to the data at hand, the model 

formulated would be a poor one. A typical example was the poor performance of the least square estimator, 

X , in the Princeton study of robust estimates of location in which 68 estimates were compared [2], 

because the normal distribution was an extreme one in the broad class of models which were studied. The 

efficiency of the parametric version of hypothesis testing mostly depend on the assumption of the 

underlying distribution of the data, for instance, the assumption of normality will require the use of 

optimal test for one-, two- and k-sample location or scale problem such as t-test, F-test and Chi-square 

tests. Notably, there seems to be over-reliance on the normal distribution and its implied assumptions by 

the practising statistician in model formulation especially in ANOVA applications, as several works on the 

data at hand are swept under the carpet, because of the assumption of normality, which is often violated in 

practice [4]. 

The asymptotic properties of statistical estimates and tests solely rely on the Central Limit Theorem 

(CLT), however, in practice sample sizes are finite and often not large. One notable area of application of 

ANOVA models is in Medical Statistics and destructive tests. The high sensitivity of such process has 
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often resulted in low sample sizes usage. This is just a few of the important areas of application, thus, one 

could argue that, could the use of the F-test, which employs the assumption of normalityof the data, be the 

optimal test to be conducted in such situations? The advocacy of distribution-free (nonparametric) tests for 

differences in location problems between samples has been emphasized over the past seven decades [5]. 

This paper proposes an adaptive procedure which employs classification techniques to inform our choice 

the optimal score function to be used in making statistical inferences on a given data set. The efficiency 

our adaptive procedure for hypothesis testing of one-way ANOVA models with uncorrelated error terms 

will be compared with the traditional F-test by computing the asymptotic relative efficiency (ARE).  

The paper is organised into six sections, the first section introduces the subject by reviewing some 

relevant literature; the second section discusses the methods and theorems used for the development of the 

procedure; and the third section presents the results and discussion of the analysis; the fourth section will 

illustrate some application on real data, and conclusion of the paper highlighting major findings is 

presented in section five. 

2. Methodology 

2.1. Least Square Estimation 

Consider the classical linear model, 

 Y X β ε= + .  (2) 

If we assume that 2(0 )N Iε σ, , then the following are implied: 

 2( )Y N X Iβ σ,  (3) 

 

1 2 1( ) ( ( ) )T T TX X X Y N X Xβ β σ− −= ,  (4) 

  

2(0 ( ) )Y Y N I Hε σ= − , −  (5) 

where 1( )T TH X X X X−=  is the hat matrix.  

The overall variability in the data is obtained by:  
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The F-test statistic is thus evaluated as:  

 
2

0 2

( ) ( 1)
( ) ( )

Treatment Treatment

Error Error

SS a MSF
SS N a MS

σ
σ
/ / −

= =
/ / −

 (7) 

is distributed as F  with 1a −  and N a−  degrees of freedom. 

2.2. Adaptation and Oneway ANOVA Model 

We developed an adaptive procedure for oneway ANOVA model under exchangeable errors. We 

consider the model, 

 y Cµ ε= + ∆ +  (8) 

The usual normality restriction on the ε  is unwind, however, we assumed exchangeability of ε . 

Under 0H , we consider a vector of distribution function,  , which is centered. We are investigating 

centered designs whose distributions are unknown or which may vary from center to center  

 

(1)

(2)

( )n

F
F

F

F

 
 
 
 
 
 
 
 
 
 
 

=


 (9) 

We are developing an adaptive procedure that adapt within the centers, because consequentially the 

assumption of exchangeability is applicable within centers [10]. Now consider the i th−  block of the 

model with m  factors and in  sample sizes for the development of our scheme, 

 ij ij ijy cµ ε= + ∆ +  (10) 
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for 1 ij n= ,..., ,  and 1i m= ,..., . where ijy  is the combined response samples, ijc  are elements of the 

design matrix iC  which are 0’s and 1’s and ∆  fixed effect parameters, ijε  are independent and 

identically distributed with distribution F. 

2.3. Rank Based Estimation 

In this thesis,the rank test used is given by: 

 
1

( )
( )

1

n
j

j j
j

R Z
T I Z Y

nφ ϕ
=

 
= = + 

∑  (11) 

where jY  and jZ  are the observed and combined ordered samples respectively, ( )1( ) j
njϕ ϕ += , 

(1)aφ , (2)aφ … ( )a nφ  are scores and ϕ  satisfies the following conditions: 

 ϕ  is a non-decreasing function and square integrable on (0 1), .  

 ϕ  is differentiable on (0 1),  and since ϕ  is square integrable, then 
1

0
( ) 0u duϕ =∫  and 

1 2

0
( ) 1u duϕ =∫ .  

The geometry of rank-based estimation is similar to that is similar to that of least squares. In rank 
based regression however, we replace Euclidean distance with another measure of distance, the Jaeckel’s 

dispersion function defined by the rankbased estimator of the shift parameter ∆  denoted by ∆̂  is given 

by: 

 ˆ Argmin || ||φφ = − ∆∆ Z C  (12) 

2.4. Scores Functions Associated with HFR Model Selection Scheme
 

For heavier-tailed models, [8] proposed the Mann-Whitney-Wilcoxon scores denoted W  to be used 

to compute the linear rank statistics: 

 
1

( )
n

W j
j

S a R
=

= ,∑  (13) 

where  
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 ( ) for 1 2W j ja R R j N= = , , ,  (14) 

and jR N  denotes the rank of the thj  observation in the second sample of the combined sample. It is 

asymptotically most powerful when the data follow a logistic distribution.  

For very heavy-tailed models, the scores for the median test denoted M  were used and defined as;  

 
1

( )
n

M j
j

S a R
=

= ∑  (15) 

where  

 
( 1)

21    if  
( )

0    otherwise

N
j

M j

R
a R

+ >= 


 (16) 

These scores are asymptotically most powerful when data follow Laplace or double exponential 

distribution with its probability density function. 

For light-tailed symmetric model denoted L, the scores used to compute the test statistic was given 

as: 

 
1

( )
n

L j
j

S a R
=

= ∑  (17) 

where 

 

( 1) 1 ( 1)
2 2 4

( 1) 1 ( 1)
4 2 4
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0                                 otherwise
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 (18) 

with mean and variance of L under the null hypothesis H0 given as μL = 0 and 

( )2( 1) ( 1)
4 42

4 1
.

6 ( 1)

N N

L

mn

N N
σ

+ +    −   
=

−  
For right-skewed distribution, the scores denoted S corresponding to the test statistic was used: 
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were used with ( )S ja R  defined as: 

 
( 1) 1
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( )
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 (20) 

with the mean and variance of the test statistics of S under the null hypothesis defined as ( 1)
2

nK K
S Nµ − +=  

and { }2
( 1)2 2

12( 1)
3 (4 3) 2nmK K

S N N
K N K Nσ +

−
= − + − + . 

For left skewed models, the score function defined as is used: 

 
1
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1

2

1 1
.2 2

0                   if  
( )

        if  

N
j

LS j N N
j j

R
a R

R R

+

+ +

 ≤= 
− >

 (22) 

2.5. Parameter Estimation
 

Consider the function 
1

|| || ( ( ))
n

i i
j

v a R v v
=

= ∑ , where ( )a j ’s are the scores such that 

(1) (2) ( )a a a n≤ ≤ ≤  and ( ) 0a j =∑ . Assume also that ( ) ( 1 )a j a n j= − + − . Then, the shift 

parameter ∆  is estimated using the following pseudo-norm,  

 
1

|| || [ ( )]
n

n
i i i

i
v a R v v vϕ

=

= , ∈ ,∑   (23) 

where ( )iR v  denotes the rank of iv  among the 1 2 … nv v v, , ,  and the scores at each observed data point 

generated as  
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for ( )j uϕ  a non decreasing bounded square-integrable function defined on (0 1),  such that 

standardizing the square-integrable function yields 
1

0
( ) 0j u duϕ =∫  and 

1 2

0
( ) 1j u duϕ =∫ , ( )a i  is the 

score such that (1) ( )a a n≤ ≤  and ( ) 0a i =∑ , satisfying the pitman regularity. For example, the 

Wilcoxon pseudo-norm is generated by the linear score function ( )1
2( ) 12u uϕ = −  and the sign score 

is generated by ( )1
2( ) sgnu uϕ = − .  

For a specific distribution, the optimum scores is selected such that the asymptotic efficacy Cϕ  is as 

large as possible or equivalently such that the asymptotic variance of ˆ ϕ∆  is small as possible ight [7]. 

The scale parameter ϕτ  is defined as: 
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∫

∫
  

( )f uϕ  is referred to as the optimal score function.  

If ∆̂  is an estimator whose variance achieves the Cramer-Rao lower bound (∀∆ ), it is called 

efficient. That is: 

 
( )2ˆ( )

ˆ( )
( )

d
d E

Var
nI
∆ ∆

∆ ≥ .
∆

 (24) 

Thus for the thj  observation in the k th−  sample, select scores with efficacies as large as possible 

or with asymptotic variance ϕτ  as small as possible [7]. The proof is as shown below: 
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where ρ  is the correlation coefficient and 
1 2

0 f duϕ∫  is the Fisher information denoted by ( )I f  [7].  

Hence by the Cramér-Rao lower bound, the smallest asymptotic variance obtainable is asymptotically 

efficient. Thus to maximise ϕτ  the score function is chosen such that 1ρ =  and ( ) ( )fu uϕ ϕ=  [7]. 

Since ˆ ϕ∆  is location and scale equivariant, only the form ( )f x  is needed. Therefore 1
( )I fϕτ = . The 

resulting estimate ˆ ϕ∆  is asymptotically efficient, implying that tτ  is a consistent estimator for τ . 

Hence for an estimator τ , the average of these estimators of the data is evaluated resulting in: 

 
1

1 j

t
tj

τ τ
=

= ∑   

which is consistent for τ  [12].  

2.6. The Proposed Adaptive Procedure
 

The procedure for the adaptive test is as follows:  

1. Let 
1 211 12 1 21 22 2 1 2… … …

kn n n n nnX X X X X X X X X, , , , , , , , , , ,  be the ordered combined random 

samples from continuous distribution function ( )f t  with some amount of variations denoted by 

δ  among the samples, that is, ( )f t δ− . The hypothesis that there is no difference in the sample 
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means, that is, 0 0H δ: =  is tested against 1 0H δ: ≠  Because random variables are 

independent and identically distributed by exchangeability theorem the joint distribution of the 

ordered random samples does not change from the original.  

2. Data is examined and classified by considering skewness and tail weight from a class of 

continuous distribution. The measure of skewness 1( )Q  according to [8] is define as:  

 505
1

50 5

%%

% %

U MQ
M L

−
= ,

−
 (25) 

where 5%U , 50%M  and 5%L  are the averages for the upper 5% , middle 50%  and the lower 

5%  of the  
( )

s
jX ′  the ordered combined samples respectively  

The measure of tailweight, 2Q , according to [8] defined as: 

 55
2

5050

%%

%%

U LQ
U L

−
= ,

−
 (26) 

where 50%U , and 50%L  are the averages of the upper 50%  and lower 50%  of the  
( )

s
jX ′  ; 

1 kN n n= + +  observations of the combined samples. These two statistics are together called 

selector statistics, 1 2( )S Q Q= , .  

3. Then specify cutoff points for the measures of skewness and tailweight. The benchmarks proposed 

by [1] as found in [10] is used. The cutoff values depend on the sample size n , but as n → ∞ , 

the measures converges to that proposed by [8]. 

For 1Q∗ , the 

 
0 68lower cutoff ( 1) 0 36clq

n
.

= . +  (27) 

 
3 72upper cutoff ( 1) 2 73cuq

n
.

= . −  (28) 
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and for 2Q∗ , when the sample size is less than 25 

 
3 01lower cutoff ( 2) 2 17clq

n
.

= . −  (29) 

 
3 94upper cutoff ( 2) 2 63cuq

n
.

= . −  (30) 

but when the sample size is at least 25, then the lower and upper cutoff are respectively defined as: 

 
4 68lower cutoff ( 2) 2 24clq

n
.

= . −  (31) 

and 

 
9 37upper cutoff ( 2) 2 63cuq

n
.

= . − .  (32) 

4. The distributional classification is evaluated as displayed in Table 1 

Table 1. The Nine distributional categorization of data 

Skewness Tailweight Distribution 

1 1Q clq≤  2 2Q clq≤  Left skewed light tailed 

1 1Q clq≤  2 2Q clq>  and 2 2Q cuq≤  Left skewed medium tailed 

1 1Q clq≤  2 2Q cuq>  Left skewed heavy tailed 

1 2Q clq≤  2 2Q clq≤  Symmetric skewed light tailed 

1 2Q clq≤  2 2Q clq>  and 2 2Q cuq≤  Symmetric skewed medium tailed 

1 2Q clq≤  2 2Q cuq>  Symmetric skewed heavy tailed 

1 2Q clq≤  2 2Q clq≤  Right skewed light tailed 

1 2Q clq≤  2 2Q clq>  and 2 2Q cuq≤  Right skewed medium tailed 

1 2Q clq≤  2 2Q cuq>  Right skewed heavy tailed 
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5. The cutoff points are used in the selection of a rank score associated with the unknown 

distribution. Nine winsorised scores classified by [6] under four generic cases are used.  

(a) 
3 2
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3 1

3 1
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s u s
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(d) 
4 3

2 1

3 1

4 2

3 1

( )
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IV
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s u s
u s u s

s u s

φ
−
−
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where s1, s2, s3, s4 and s5 are parameters and ( )1( ) j
i i njϕ ϕ += .  

Table 2 below provides the benchmarks needed for the nine Winsorised Wilcoxon Scores 

proposed by [6]. 

Table 2. Benchmarks for Winsorised Scores 

Skewness Tail weight Score function 

Left Light 1 IIIϕ ϕ=  with parameters ( 1 0 1s = . , 2 1s = −  and 3 2 0s = . ) 

Left Medium 2 IIIϕ ϕ=  with parameters ( 1 0 3s = . , 2 1s = −  and 3 2 0s = . ) 

Left Heavy 3 IIIϕ ϕ=  with parameters ( 1 0 5s = . , 2 1s = −  and 3 2 0s = . ) 

Symmetric Light 4 IIϕ ϕ=  with parameters ( 1 0 25s = . , 2 0 75s = . , 3 1s = − , 4 1 0s = .  and 5 0 0s = . ) 

Symmetric Medium Wilcoxon scores 1
5 212[ ]uϕ = −  

Symmetric Heavy 6 IVϕ ϕ=  with parameters ( 1 0 25s = . , 2 0 75s = . , 3 1s = −  and 4 1 0s = . ) 
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Right Light 7 IIϕ ϕ=  with parameters ( 1 0 9s = . , 2 2s = −  and 3 1 0s = .  4 1s = , and 5 0s = ) 

Right Medium 8 Iϕ ϕ=  with parameters ( 1 0 7s = . , 2 2s = −  and 3 1 0s = . ) 

Right Heavy 9 Iϕ ϕ=  with parameters ( 1 0 5s = . , 2 2s = −  and 3 1 0s = . ) 

 

Thus, supposing kA  and kϕ  are the classified region and associated scores selected respectively of 

a particular data, then the adaptive test, ( )AD S ϕ,  is ( )
k kAD S T S Aϕϕ, = , ∈ , where  

 
2

1
( ) ( ( ))

k k

n

j
j

T a R xϕ ϕ
=

∆ = − ∆∑  (33) 

is the test statistic on the ranks and score kϕ , associated with region kA  and hence distribution free. [4] 

proposed a lemma and proved that such a test maintains the level of significance.  

Theorem 2.1. The Asymptotic Relative Efficiency (A.R.E) between two estimates or two tests based 

on the score functions 1( )uϕ  and 2 ( )uϕ  of one score function relative to other is defined by:  

 1 2

12

2 2

1 2 2 2( )
c

e
c

ϕ ϕ

ϕϕ

τ
ϕ ϕ

τ
, = =   

where 1c  and 2c  are respectively the efficacies of the two estimates and 
iϕτ , 1 2i = ,  are the scale 

parameters of the two score functions.  

3. Findings and Discussions 

The procedure above was implemented in RStudio and R version 3.1.2. Simulation results under 

various continuous distributions are presented and discussed accordingly. 

3.1. Normal distribution
 

Simulation results are presented in Table 3 for Normal distribution with 0µ =  and 1σ = .  
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Table 3. Simulation Results of Adaptive Test and Parametric Test for Standard Normal distribution 

Sample size  F-test Adaptive Test 

( 1n , 2n , 3n )  Value  p-value  σ   Score  Value  p-value  τ  

(5,5,5)  8.919  0.00423  1.102  SM  1.36112  0.29325  2.3005  

(10,10,10)  37.36  1.67e-08  0.60  SM  6.4436  0.00515  2.106234  

(15,15,15)  9.354  0.00437  0.898  SM  14.82175  1e-05  1.863697  

(20,20,20)  25.12  51e-08  0.894  SM  31.24179  0.0000  1.6138266  

 

The selector statistics for the adaptive test identified the standard normal distribution with 0µ =  

and 1σ =  as a symmetric skewed and medium tailed distribution. By looking at the variance returned, it 

is obvious from Table 3that the parametric F-test outperforms the adaptive test at all the level sample sizes 

considered. However, with exception of sample size (5, 5, 5), the two models suggested a rejection to null 

hypothesis of no difference in level means.The ARE of the F-test over the Adaptive test if the data under 

consideration is from a normal distribution is between 25% and 55%. It was observed that the ARE 

increased as sample sizes of the levels increased.  

3.2. Laplace Distribution
 

Using the Laplace distribution with rate = 2, 10,000 simulations were carried out. Simulation results 

are presented in Table 4. 

Table 4. Simulation Results of Adaptive Test and Parametric Test for Laplace Distribution 

Sample size  F-test  Adaptive Test 

( 1n , 2n , 3n )  Value  p-value  σ   Score  Value  p-value  τ  

(5,5,5)  2.167  0.157  1.1912  SH  0.66953  0.53007  0.9625982  

(10,10,10)  0.368  0.696  1.37295  SH  2.99766  0.06673  1.202722  

(15,15,15)  0.929  0.403  1.4426  SH  1.35735  0.2684  1.040336  

(20,20,20)  0.783  0.462  1.3142  SH  1.35488  0.26616  1.265793  

The Laplace distribution with rate=2 was identified by the adaptive test as a symmetric skewed and 

heavy tailed distribution.From Table 4, the variance returned suggest that the adaptive test performed 
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better at all the level sample sizes considered than the F-test. However, the two models failed to reject the 

null hypothesis of no difference in level means at all sample sizes considered.The ARE of the Adaptive 

test over the F-test if the data under consideration is from a Laplace distribution is between 4% and 20%. 

It was observed that the ARE decreased as sample sizes of the levels increased.  

3.3. Truncated Logistic Distribution
 

Using the Truncated Logistic distribution, 10,000 simulations were carried out. Simulation results are 

presented in Table 5. 

Table 5. Simulation Results of Adaptive Test and Parametric Test for Truncated Logistic Distribution 

Sample size F-test Adaptive Test 

( 1n , 2n , 3n )  Value p-value  σ   Score  Value  p-value  τ  

(5,5,5)  2.728 0.106  0.0690  SL  8.78345  0.00447  0.145689  

(10,10,10)  2.379 0.112  0.0765  SL  0.58683  0.56303  0.2340154  

(15,15,15)  0.735 0.486  0.06937  SL  5.57869  0.0071  0.2100686  

(20,20,20)  2.403 0.0995  0.08595  SL  0.40197  0.67088  0.2830328  

 

The Truncated Logistic distribution with 0µ =  and 1σ = was identified by the adaptive test as a 

symmetric skewed and light tailed distribution.From Table 5, the variance returned suggest that the 

adaptive test underperformed at all the level sample sizes considered than the F-test. However, the two 

models failed to reject the null hypothesis of no difference in level means at all sample sizes considered 

except at sample size 5, where the Adaptive test rejected 0H  whereas the F-test resulted otherwise.The 

ARE of the Adaptive test over the F-test if the data under consideration is from a Truncated Logistic 

distribution is between 30% and 48%. It was observed that the ARE decreased as sample sizes of the 

levels increased.  

3.4. Contaminated Normal Distribution
 

The normal distribution is contaminated with binomial random variable at 5%, 10%, 15% and 20%. 
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Table 6. Simulation Results of Adaptive Test and Parametric Test for Contaminated Normal Distribution 

Sample size  Level F-test  Adaptive Test  

( 1n , 2n , 3n ) %  Value  p-value  σ   Score  Value  p-value  τ  

(5,5,5)  4* 5%  1.002  0.396  9.672  SH  2.20517  0.15289  6.111384  

 10%  1.764  0.213  4.797  SH  4.96343  0.02687  3.038976  

 15%  0.579  0.575  6.145  SH  1.18599  0.33884  4.818696  

 20%  3.317  0.0713  11.40  SH  0.95542  0.41207  6.154036  

(10,10,10)  4* 5%  2.246  0.125  7.171  SH  1.76329  0.19066  5.800966  

 10%  1.472  0.247  7.79  SH  2.22532  0.12747  4.875872  

 15%  1.281  0.294  7.279  SH  0.05517  0.94643  5.649184  

 20%  3.133  0.0597  6.277  SH  0.82296  0.44985  5.836568  

(15,15,15)  4* 5%  0.044  0.957  8.097  SH  0.46592  0.63076  4.821166  

 10%  1.09  0.345  8.359  SH  1.19274  0.31345  5.927768  

 15%  0.266  0.768  7.116  SH  0.56405  0.57315  5.865964  

 20%  0.939  0.399  6.808  SH  1.96386  0.15299  5.401612  

(20,20,20)  4* 5%  2.783  0.0703  7.374  SH  1.0307  0.36331  5.998714  

 10%  2.053  0.138  5.791  SH  0.10909  0.89684  4.705272  

 15%  0.095  0.91  6.211  SH  0.68746  0.50697  4.953914  

 20%  0.809  0.45  5.694  SH  2.84496  0.06642  5.708576  

 

The Normal distribution at 5% contamination was identified by the adaptive test as a symmetric 

skewed and heavy tailed distribution.From Table 6, the variance returned suggest that the adaptive test 

outperformed at all the sample sizes considered than the F-test. However, the two models failed to reject 

the null hypothesis of no difference in level means at all sample sizes considered. The ARE of the 

Adaptive test over the F-test if the data under consideration is from a 5% contaminated normal distribution 

is between 20% and 40%. It was observed that the ARE decreased as sample sizes of the levels increased.  

At 10% contamination, sample size of 5 was identified as symmetric skewed and heavy tailed distribution 

whereas that for the other sample sizes were identified as symmetric skewed and medium tailed 

distribution.From Table 6, the variance returned by the models suggest that the Adaptive Test performed 

better than the F-test. The ARE of the Adaptive test over the F-test is between 20% to 50%.  
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At 15% contamination, sample size of 5 was identified as symmetric skewed and heavy tailed distribution 

whereas that for the other sample sizes were identified as symmetric skewed and medium tailed 

distribution.From Table 6, the variance returned by the models suggest that the Adaptive Test performed 

better than the F-test at sample sizes 5, 10 and 15. The ARE of the Adaptive test over the F-test is between 

17% to 25%.  

At 20% contamination, the distribution was identified as symmetric skewed and heavy tailed 

distribution.From Table 6, the variance returned by the models suggest that the Adaptive Test performed 

better than the F-test at sample sizes 5, 10 and 15. The ARE of the Adaptive test over the F-test is between 

7% to 48%. However, at sample size 20, the F-test performed better than the Adaptive test with ARE of 

2%.  

3.5. Mixture of Distributions
 

We considered the situation where the data for the various levels are from different distributions. 

10,000 simulations were performed where data for level one samples were simulated from Weibull 

distribution (shape = 2 and scale = 1), data for level two samples were from Truncated Logistic 

distribution (location = 0 and scale = 1) and data for level three samples were from Laplace distribution 

(rate = 1). Table 7 presents the results from the simulated studies.  

Table 7. Simulation Results of Adaptive Test and Parametric Test for Mixture of Distributions 

Sample size  F-test  Adaptive Test 

( 1n , 2n , 3n )  Value  p-value  σ   Score  Value  p-value  τ  

(5,5,5)  2.94  0.0914  0.9452  SH  6.27413  0.01364  0.4236017  

(10,10,10)  1.88  0.172  1.217  SH  2.22578  0.12742  0.6232764  

(15,15,15)  4.973  0.0115  0.7351  SH  5.26962  0.00908  0.6460359  

(20,20,20)  0.867  0.426  1.0393  SH  10.00631  0.00019  0.9048917  

 

The Adaptive test identified the data as a symmetric skewed and heavy tailed distribution. The test 

decision on rejection or otherwise of 0H  at sample sizes (5, 5, 5) and (20, 20, 20) differs among the two 

tests at 5% level of significance. The Adaptive test identified significance difference in means whiles the 

F-test concluded otherwise. However, at sample sizes (10, 10, 10) and (15, 15, 15), both test yielded same 

decision results. The variances for the two tests suggest that the Adaptive test performs better than the 
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F-test. The ARE of the Adaptive test over the F-test is between 40% and 64%. There seems to be a decline 

in efficiency of the Adaptive test over F-test as the sample sizes increase.  

4. Application 

4.1. Apple Orchard Grafting Experiment
 

[11] conducted an experiment to investigate five types of root-stock in apple orchard grafting.The 

following data in Table (8) represent the extension growth (cm) after four years.  

X1 = extension growth for type I  

X2 = extension growth for type II  

X3 = extension growth for type III  

X4 = extension growth for type IV  

X5 = extension growth for type V   

Table 8. Output from the Apple Orchard Grafting Experiment  

Type  Extension growth (cm) 

X1  2569 2928 2865 3844 3027 2336 3211 3037  

X2  2074 2885 3378 3906 2782 3018 3383 3447  

X3  2505 2315 2667 2390 3021 3085 3308 3231  

X4  2838 2351 3001 2439 2199 3318 3601 3291  

X5  1532 2252 3083 2330 2079 3366 2416 3100  

 

The analysis performed is presented in Table (9). 

Table 9. Results of Adaptive Test and Parametric Test for Apple Orchard Grafting Experiment 

Sample size  F-test Adaptive Test 

( 1n , 2n , 3n )  Value  p-value  σ  Score  Value  p-value  τ  

(8,8,8)  1.49  0.226  510.2362  SM  1.08381  0.37948  618.4604  

 

From Table (9), the Adaptive test identified the data as symmetric skewed and medium tailed 

distribution. The F-test reported the least variance depicting it as the most efficient for the data. The ARE 

of F-test over the Adaptive test is 17.5 
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4.2. Automatic Valve Shutoff Mechanism Experiment
 

This example was extracted from [9]. The response time in milliseconds was determined for three 

different types of circuits that could be used in an automatic valve mechanism presented in Table (10).  

Table 10. Output from the Automatic Valve Shutoff Mechanism Experiment  

Circuit Type  Response Time 

1  9 12 10 8 15 

2  20 21 23 17 30 

3  6 5 8 16 7 

 

The analysis performed is presented in Table (11). 

Table 11. Results for Automatic Valve Shutoff Mechanism Experiment 

Sample size  F-test  Adaptive Test 

( 1n , 2n , 3n )  Value  p-value  σ   Score  Value  p-value  τ  

(5,5,5)  16.08  0.000402  4.11096  RL  16.08075  4e-04  3.325721  

 

From Table (11), the Adaptive test identified the data as right skewed and light tailed distribution. 

Although, both test at 1% and 5% level of significance concluded against the null hypothesis, 0H , the 

Adaptive test reported the least variance depicting it as the most efficient for the data. The ARE of 

Adaptive test over the F-test is 19.1%. This results agree with the findings from the simulation studies, 

where Adaptive test performed better than the F-Test for data from non-symmetric skewed and varying 

tailed distribution.  

5. Conclusion 

The findings of the study reveal several advantages of the use of the Adaptive test. The distributional 

characterization of the data at hand is known to the researcher. This information is very crucial in data 

analysis. The robustness of the Adaptive test implies higher reliability of results from use. Although, the 

F-test displayed superiority in efficiency in symmetric skewed, medium and light tailed distributions, the 

Adaptive test was more efficient in more broader class of continuous distribution.The performance of 
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these test at small sample sizes was of much importance in this thesis because most sensitive areas of the 

application of oneway ANOVA models often has very low sample size usage. The Adaptive test was more 

efficient at very small sample sizes compared to the F-test. It is important to also note that the F-test also 

performed appreciably well as the sample sizes increased.Based on the findings of this study, the Adaptive 

Test should be considered in statistical analysis of oneway ANOVA models. 
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