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Abstract 
The complexity of the deformation equation increases exponentially with the order of approximation.  

Consequently, implementing the Laplace homotopy analysis method (LHAM) under high deformation 

order can be very computationally costly and lengthy and even cause computational paralysis in cases. 

Here, the LHAM is modified in a reinitiated manner where the low order results are initiated for further 

approximation using truncated Maclaurin expansions. This modified approach manages to avoid high 

order approximation but still promises accurate approximate series solution. This approach greatly 

improves the efficiency of LHAM in solving integral equations. 

Keywords: Laplace transform, homotopy analysis method (HAM), integral equations. 

Introduction  

Integral equations (IEs) arise commonly in various modeling of initial value problems appear in 

physics, chemistry, biology and engineering applications [1, 2]. IEs have been studied and solved by many 

researchers using various methods, such as, series solution method, Adomian decomposition method, 

homotopy perturbation method and variational iteration method [3-5]. IEs are also solved using homotopy 

analysis method (HAM) and Laplace homotopy analysis method (LHAM) [6-8]. To improve the 

homotopy-approximation accuracy, a typical move is to increase the deformation order. However, as the 

deformation order goes higher, the number of terms in the deformation equation increases very rapidly and 
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hence complicating the deformation equation greatly. This leads to very lengthy and complicated symbolic 

computation. Hence, the exponential growth of computation time has become a major drawback for LHAM 

under high deformation order. 

To address the proliferation of terms and the computation tediousness, we modify the iterative 

approach in [9] with the help of the truncated Maclaurin series. The approach keeps low homotopy 

deformation order but reinitiates the truncated low order homotopy-approximation and iterates the process. 

This modified approach is named reinitiated LHAM and will be abbreviated as RE-LHAM henceforth. In 

the following two test examples, the IEs are solved by the standard LHAM and the RE-LHAM respectively 

to compare and to illustrate the strength of RE-LHAM. 

LHAM For Integral Equations 

The LHAM starts by performing Laplace transform onto the problem under study, followed by 

implementing HAM onto the ‘Laplace transformed’ problem. For illustration, consider a nonlinear IE with 

the following general form 

 

𝑦𝑦(𝑡𝑡) − 𝑓𝑓(𝑡𝑡) −� 𝐾𝐾�𝑡𝑡,𝑢𝑢,𝑦𝑦(𝑢𝑢)�ⅆ𝑢𝑢
𝑏𝑏(𝑡𝑡)

𝑎𝑎(𝑡𝑡)
= 0, (1) 

where 𝐾𝐾 is a nonlinear kernel, 𝑓𝑓(𝑡𝑡) is an arbitrary function and 𝑦𝑦(𝑡𝑡) is the unknown function of  𝑡𝑡 to be 

solved. Taking the Laplace transform onto (1), we have 

 

𝐿𝐿𝐿𝐿𝐿𝐿{𝑦𝑦(𝑡𝑡)} − 𝐿𝐿𝐿𝐿𝐿𝐿{𝑓𝑓(𝑡𝑡)} − 𝐿𝐿𝐿𝐿𝐿𝐿 �� 𝐾𝐾�𝑡𝑡,𝑢𝑢,𝑦𝑦(𝑢𝑢)�ⅆ𝑢𝑢
𝑏𝑏(𝑡𝑡)

𝑎𝑎(𝑡𝑡)
� = 0, (2) 

where 𝐿𝐿𝐿𝐿𝐿𝐿 denotes the Laplace transform operator. Now, the standard HAM is implemented onto (2) 

adopting the ideas in [9, 10]. Based on the Laplace transformed problem (2), we define the LHAM nonlinear 

operator 

 

𝑁𝑁�{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} − 𝐿𝐿𝐿𝐿𝐿𝐿{𝑓𝑓(𝑡𝑡)} − 𝐿𝐿𝐿𝐿𝐿𝐿 �� 𝐾𝐾�𝑡𝑡, 𝑞𝑞,𝑢𝑢,𝜑𝜑(𝑢𝑢, 𝑞𝑞)�ⅆ𝑢𝑢
𝑏𝑏(𝑡𝑡)

𝑎𝑎(𝑡𝑡)
�, (3) 

where 𝜑𝜑(𝑡𝑡, 𝑞𝑞) is a function of 𝑡𝑡 and the homotopy-parameter 𝑞𝑞. 

We then construct the zeroth-order deformation equation 
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 (1 − 𝑞𝑞)𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑(𝑡𝑡, 𝑞𝑞) − 𝑣𝑣0(𝑡𝑡)} = 𝑞𝑞ℎ𝑁𝑁�{𝜑𝜑(𝑡𝑡, 𝑞𝑞)}, (4) 

where 𝑞𝑞 ∈ [0,1] is the homotopy-parameter, ℎ is the convergence-control parameter, and  𝑣𝑣0(𝑡𝑡) is the 

initial guess function. This will build a continuous deformation from the initial guess 𝑣𝑣0(𝑡𝑡) to the true 

solution of the problem 𝑦𝑦(𝑡𝑡) . When 𝑞𝑞 = 0 , we have 𝜑𝜑(𝑡𝑡, 0) = 𝑣𝑣0(𝑡𝑡) ; whereas when 𝑞𝑞 = 1 , we 

have  𝑁𝑁�{𝜑𝜑(𝑡𝑡, 1)} = 0 or equivalently  𝜑𝜑(𝑡𝑡, 1) = 𝑦𝑦(𝑡𝑡). Thus, 𝜑𝜑(𝑡𝑡, 𝑞𝑞) represents a continuous deformation 

from the initial guess 𝑣𝑣0(𝑡𝑡) to the solution of the problem 𝑦𝑦(𝑡𝑡) as 𝑞𝑞 increases from 0 to 1. 

By Taylor’s theorem, we may expand 𝜑𝜑(𝑡𝑡, 𝑞𝑞) into Maclaurin series with respect to 𝑞𝑞 

 

𝜑𝜑(𝑡𝑡, 𝑞𝑞) = 𝑣𝑣0(𝑡𝑡) +�𝑣𝑣𝑗𝑗 (𝑡𝑡)𝑞𝑞𝑗𝑗
∞

𝑗𝑗=1

, (5) 

where 𝑦𝑦(0) = 𝑣𝑣0 and 

 

𝑣𝑣𝑗𝑗 (𝑡𝑡) =
1

 𝑗𝑗! 
�𝜕𝜕
𝑗𝑗 𝜑𝜑(𝑡𝑡, 𝑞𝑞)

 𝜕𝜕𝑞𝑞𝑗𝑗
�
𝑞𝑞=0

= 𝐷𝐷𝑗𝑗� {𝜑𝜑(𝑡𝑡, 𝑞𝑞)}. (6) 

Here, 𝐷𝐷𝑗𝑗� {𝜑𝜑(𝑡𝑡, 𝑞𝑞)} is known as the jth-order homotopy-derivative of 𝜑𝜑 while 𝑗𝑗 is an integer and 𝑗𝑗 ≥ 0 

[10]. Further, 𝐷𝐷𝑗𝑗� { } is called the jth-order homotopy-derivative operator. 

If ℎ, 𝑣𝑣0(𝑡𝑡) are properly chosen, the series (5) will converges to 𝑦𝑦(𝑡𝑡) at 𝑞𝑞 = 1 such that we get the 

LHAM series solution of 𝑦𝑦(𝑡𝑡) 

 

𝜑𝜑(𝑡𝑡, 1) = 𝑦𝑦(𝑡𝑡) = 𝑣𝑣0(𝑡𝑡) + �𝑣𝑣𝑗𝑗 (𝑡𝑡)
∞

𝑗𝑗=1

. (7) 

In practice, the upper limit of the summation is truncated to a finite integer. So, the nth-order LHAM series 

approximation of 𝑦𝑦(𝑡𝑡) is defined by 

 

𝑦𝑦(𝑡𝑡) ≈ 𝑣𝑣0(𝑡𝑡) + �𝑣𝑣𝑗𝑗 (𝑡𝑡)
𝑛𝑛

𝑗𝑗=1

. (8) 

Applying 𝐷𝐷𝑗𝑗� { } onto both sides of (4), we can derive the jth order deformation equation  

 

�
𝐿𝐿𝐿𝐿𝐿𝐿�𝑣𝑣𝑗𝑗 (𝑡𝑡)� = ℎ𝑁𝑁�{𝜑𝜑(𝑡𝑡, 0)} = ℎ𝑁𝑁�{𝑣𝑣0(𝑡𝑡)},        𝑗𝑗 = 1
𝐿𝐿𝐿𝐿𝐿𝐿�𝑣𝑣𝑗𝑗 (𝑡𝑡) − 𝑣𝑣𝑗𝑗−1(𝑡𝑡)� = ℎ𝐷𝐷�𝑗𝑗−1�𝑁𝑁�[𝜑𝜑(𝑡𝑡, 𝑞𝑞)]�,   𝑗𝑗 ≥ 2 

� (9) 
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To get the LHAM series solution, we need to compute all the 𝑣𝑣𝑗𝑗 (𝑡𝑡) for 𝑗𝑗 ≥ 1 as in (7). In fact, all these 

𝑣𝑣𝑗𝑗 ’s which constitutes the LHAM series solution can be obtained by solving the jth order deformation 

equation (9) for 𝑣𝑣𝑗𝑗 (𝑡𝑡). Doing so, one ends up 

 

𝑣𝑣𝑗𝑗 (𝑡𝑡) = �
 ℎ 𝐿𝐿𝐿𝐿𝑝𝑝−1�𝑁𝑁�[𝑣𝑣0(𝑡𝑡)]�,                                       𝑗𝑗 = 1

ℎ 𝐿𝐿𝐿𝐿𝑝𝑝−1 �𝐷𝐷�𝑗𝑗−1�𝑁𝑁�[𝜑𝜑(𝑡𝑡, 𝑞𝑞)]��+ 𝑣𝑣𝑗𝑗−1(𝑡𝑡),   𝑗𝑗 ≥ 2
� (10) 

where 𝐿𝐿𝐿𝐿𝑝𝑝−1is the inverse Laplace transform operator. Note that this expression gives a recursion relation 

between 𝑣𝑣𝑗𝑗 (𝑡𝑡)  and 𝑣𝑣𝑗𝑗−1(𝑡𝑡)  making it possible to compute all the subsequent 𝑣𝑣𝑗𝑗 (𝑡𝑡)  when 𝑣𝑣0(𝑡𝑡)  is 

available. And this is achievable since 𝑣𝑣0(𝑡𝑡) is the initial guess of our choice. 

The Proposed Re-LHAM Approach 

In the frame of LHAM (and HAM), one can choose the initial guess 𝑣𝑣0(𝑡𝑡) freely. However, a good 

initial guess i.e. one that is closer to the solution, can accelerate the convergence of the 

homotopy-approximation and logically, the better the initial guess, the faster the convergence will be. The 

homotopy-approximation of a low deformation order LHAM may not be good, nevertheless, it is better that 

the initial guess. If this low order homotopy-approximation is then used as an initial guess in another round 

of LHAM implementation, one can expect to obtain an ‘even better’ low order homotopy-approximation; 

and this process can be iterated. This is roughly the idea of iterative HAM introduced by Liao [9]. Here, we 

modify Liao’s iterative technique such that the low order homotopy-approximation is expanded as its 

truncated Maclaurin series and the truncated series is then re-used as the new initial guess for the next low 

order approximation, and the procedure is iterated. Using this truncated reinitiated iterative approach 

(named RE-LHAM), a better and better LHAM approximation can be obtained in general.  

Applications Examples 

In this section, two test examples are solved by both LHAM and RE-LHAM to compare and to show 

the feasibility and advantage of RE-LAHM. We only focus on nonlinear volterra IE of the second kind 

having the general form  

 
𝑦𝑦(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) + 𝜆𝜆 ∫ 𝐾𝐾(𝑡𝑡, 𝑢𝑢)𝐹𝐹�𝑦𝑦(𝑢𝑢)�ⅆ𝑢𝑢𝑡𝑡

𝑎𝑎 , (11) 
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where the function 𝑓𝑓(𝑡𝑡), the kernel of the IE 𝐾𝐾(𝑡𝑡,𝑢𝑢) and the parameter 𝜆𝜆 are given in advance while 

𝐹𝐹�𝑦𝑦(𝑢𝑢)� is a nonlinear function in 𝑦𝑦(𝑢𝑢). 

Test Example 1 

We consider 

 
𝑦𝑦(𝑡𝑡) = cos t −

1
2

t −
1
4

sin 2t + � 𝑦𝑦2(𝑢𝑢)ⅆ𝑢𝑢
𝑡𝑡

0
 (12) 

whose solution is cos 𝑡𝑡 [3].  In the frame of LHAM, the LHAM nonlinear operator for this problem is  

 
𝑁𝑁�{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} − 𝐿𝐿𝐿𝐿𝐿𝐿 �cos t −

1
2

t −
1
4

sin 2t�  − 𝐿𝐿𝐿𝐿𝐿𝐿 �� 𝜑𝜑2(𝑢𝑢, 𝑞𝑞)ⅆ𝑢𝑢
𝑡𝑡

0
�, (13) 

Using the initial guess 𝑣𝑣0 = 1 and the recurrence (10), we obtain the LHAM series approximation of this 

problem.  For example, the series approximation under one deformation order is 

 
𝑆𝑆𝑆𝑆1(ℎ, 𝑡𝑡) = 1 +

1
4
ℎ(4 − 2𝑡𝑡 − 4 cos t + sin 2t). (14) 

After the ‘h-curve’ is plotted and studied (not shown here), ℎ = −1 is chosen for this problem throughout.  

For example, with this ℎ-value, the series approximations under one and two deformation order are, 

respectively 

 
𝑆𝑆𝑆𝑆1(ℎ = −1, 𝑡𝑡) = 1 +

1
4

(−4 + 2𝑡𝑡 + 4 cos 𝑡𝑡 − sin 2𝑡𝑡), (15) 

 

 
𝑆𝑆𝑆𝑆2(ℎ = −1, 𝑡𝑡) =  1 +

1
2

(−4 + 2 𝑡𝑡 + 4 cos 𝑡𝑡 − sin 2𝑡𝑡) + 

1
4

(3 − 10 𝑡𝑡 + 2 𝑡𝑡2 − 4 cos 𝑡𝑡 + cos 2𝑡𝑡 + 8 sin 𝑡𝑡 + sin 2𝑡𝑡). 
(16) 

For higher deformation order, one already can foresee the rapid breeding of terms in the LHAM series 

approximation and the raise of burden in computing 𝑣𝑣𝑗𝑗 (𝑡𝑡) from the recurrence (10). 

Implementing the RE-LHAM, a more accurate result is obtained in less CPU time. For comparison, the 

series approximation of 8-order LHAM (𝑆𝑆𝑆𝑆8(−1, 𝑡𝑡)) and the series approximation of the 1-order, 8-iteration 

RE-LHAM (𝑆𝑆𝑆𝑆1,8(−1, 𝑡𝑡)) are shown in Figure 1 below, together with the analytic solution. The CPU time 

is 485 units for LHAM and 71 units for RE-LHAM. 
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Figure 1. (a) The series approximation by RE-LHAM under 1 deformation order and 8 iterations. (b) The series 

approximation by the standard LHAM under 8 deformation order. The dotted curve is the exact solution cos 𝑡𝑡 in both 

graphs.  

It is obvious that the series approximation by RE-LHAM is more superior than the one by LHAM in the 

sense that it survives longer before diverges and furthermore, it takes much lesser CPU time. To roughly 

quantify how good a series approximation is, we define the ‘convergence length’ as the time it takes before 

the absolute difference between the exact solution and the series approximation of the problem grows larger 

than certain tolerance. Mathematically, the convergence length, 𝑡𝑡𝑒𝑒 , satisfies the following inequality 

 
|𝑦𝑦(𝑡𝑡𝑒𝑒) − 𝑆𝑆𝑆𝑆(𝑡𝑡𝑒𝑒)| ≤ 𝜀𝜀 , (17) 

where 𝑦𝑦(𝑡𝑡) is the exact solution of the problem, 𝑆𝑆𝑆𝑆(𝑡𝑡) is the series approximation of the problem and 𝜀𝜀 is 

the tolerance. The convergence length simply serves as a rough measurement of how long the series 

approximation is ‘well-behave’ before diverges. For 𝜀𝜀 = 0.5, the convergence length by both LHAM and 

RE-LHAM are plotted in Figure 2. Apparently, the convergence length by RE-LHAM shows quite a linear 

increment with the number of iterations while the one by LHAM only fluctuates about 2 when the 

deformation order increases.  

 

Figure 2. The convergence length versus the iteration number for RE-LHAM (solid); the convergence length versus 

the deformation order for LHAM (dotted).  
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Figure 3. The CPU time versus the iteration number for RE-LHAM (solid); the CPU time versus the 

deformationorder for LHAM (dotted). 

On the other hand, the CPU time of LHAM grows exponentially with the deformation order whereas 

the growth of CPU time for RE-LHAM is much slower when the iteration number increases as indicated in 

Figure 3. This example exposes the weakness of the standard LHAM, i.e. when we increase the deformation 

order, the computation time rises exponentially but the series approximation barely improves. This shows a 

very great computational inefficiency for LHAM. But then RE-LHAM has effectively served as an 

alternative to improve the efficiency of LHAM. It has somewhat circumvented the need to use higher 

deformation order to acquire better accuracy and hence avoided the complexity and time consuming issue 

faced in high order LHAM implementation. 

Test Example 2 

 

We consider another nonlinear Voterra IE [3] 

 
𝑦𝑦(𝑡𝑡) = 𝑒𝑒𝑡𝑡 +

1
2
𝑡𝑡(𝑒𝑒2𝑡𝑡 − 1) −� 𝑡𝑡𝑦𝑦2(𝑢𝑢)ⅆ𝑢𝑢

𝑡𝑡

0
 (18) 

having the solution 𝑦𝑦(𝑡𝑡) = 𝑒𝑒𝑡𝑡 . After taking the Laplace transform, the LHAM nonlinear operator can be 

readily constructed as follows 

 
𝑁𝑁�{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} = 𝐿𝐿𝐿𝐿𝐿𝐿{𝜑𝜑(𝑡𝑡, 𝑞𝑞)} − 𝐿𝐿𝐿𝐿𝐿𝐿 �𝑒𝑒𝑡𝑡 +

1
2
𝑡𝑡(𝑒𝑒2𝑡𝑡 − 1)� + 𝐿𝐿𝐿𝐿𝐿𝐿 �� 𝑡𝑡𝑦𝑦2(𝑢𝑢)ⅆ𝑢𝑢

𝑡𝑡

0
�. (19) 

The initial guess 𝑣𝑣0(𝑡𝑡) = 1 is used and the series approximation can be computed using the recurrence (10). 

The analysis is attempted in the same direction like those in the Test Example 1: comparison is done 

between the 8-order LHAM series approximation and the 1-order, 8-iteration LHAM series approximation. 

The graphs of the series approximations and the exact solution are plotted in Figure 4; the convergence 
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lengths (with 𝜀𝜀 = 0.5) and the CPU times are shown in Figure 5 and Figure 6, respectively. In this example, 

the convergence-control parameter ℎ = −1 is used based on the ‘h-curve’ study (not shown here).  

 

 

Figure 4. (a) The series approximation by RE-LHAM under 1 deformation order and 8 iterations. (b) The series 

approximation by the standard LHAM under 8 deformation order. The dotted curve is the exact solution 𝑒𝑒𝑡𝑡  in both 

graphs 

 

 

Figure 5. The CPU time versus the iteration number for RE-LHAM (solid); the convergence length versus the 

deformation order for LHAM (dotted). For visualization, the same convergence length for RE-LHAM is plotted again 

using a secondary y-axis on the right (solid with circular marker). 
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Figure 6. The convergence length versus the iteration number for RE-LHAM (solid); the convergence length time 

versus the deformationorder for LHAM (dotted). 

For this example, the results shown in the Figure 4-Figure 6 demonstrate a similar overview like the 

previous example. When the deformation order of LHAM increases, the CPU time increases exponentially 

but the convergence length hardly increases. The deficiency of LHAM in higher order implementation and 

meanwhile the validity of RE-LHAM is reaffirmed here.  

Conclusions 

Based on the results in the application examples, we may conclude that using LHAM, it is costly to 

improve the homotopy-approximation accuracy by increasing the deformation order because the CPU time 

rises exponentially whereas the convergence length does not increase obviously with the increase of the 

deformation order. However, in RE-LHAM, improving the homotopy-approximation accuracy by 

increasing the iteration number is more worthwhile because the CPU time rise relatively slower and yet 

the convergence length increase relatively much more obviously with the increase of the iteration number. 

Hence, the proposed RE-LHAM shows a constructive attraction in that it manages to accelerate the 

convergence of the homotopy-approximation meanwhile reduce the computation time and complexity of 

LHAM implementation as illustrated. 
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