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Abstract 

Two theorems that reduce solutions of the general quasi-static problem of linear viscoelasticity theory 

to a solution of the corresponding problem of elasticity theory are proved. These theorems hold if one of 

the following conditions is satisfied: 1) the material is close to a mechanically uncompressible material; 

2) the mean stress is zero; 3) the shift and volume hereditary functions are equal. The theorems provide 

free direct and inverse transforms between solutions of viscoelasticity and elasticity problems, which 

makes them convenient in applications. They have been applied to solutions of problems on the pure 

torsion of a prismatic viscoelastic solid with an arbitrary simply connected cross section. Some 

examples describing the obtained results have been considered. 

Keywords: viscoelasticity, quasi-static problems, exact solutions, torsion problems. 

1. Introduction 

It is well known that solutions to the quasi-static problems in linear viscoelasticity theory, in most 

cases, are obtained from the corresponding problems of elasticity theory by using Volterra’s principle, that 

is by the way of replacing elastic constants by some operators and subsequent interpretation of these 

operators [1]. There are also a number of methods for solving the mentioned problems by applying 

Laplace’s, Laplace-Carson’s, Fourier’s integral transformations [2-4]. In the last case, an exact 

determination of original functions from the obtained image function is not always possible. In the present 
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paper, under some conditions, theorems reducing solutions of quasi-static problems of linear 

viscoelasticity theory to solutions of the corresponding problems of elasticity theory are proved. 

Statement of the General Quasi-Static Problem of Linear Viscoelasticity 

We will consider an isotropic homogeneous material. Write out the determining relations between 

components of stress tensors ijσ  and deformation tensors ijε  in the following form [4]: 

 ( ) ( )0
0

2
t

ij ij ijG e s t s dτ τ τ= + Γ − ,∫  (1) 

 ( ) ( )0
0

t

K U t dθ σ τ σ τ τ= + − ,∫  (2) 

or 

 ( ) ( )
0 02

t
ij

ij ij

s
e L t e d

G
τ τ τ= − − ,∫  (3) 

 ( ) ( )
0 0

t

M t d
K
σ θ τ θ τ τ= − − .∫  (4) 

Here t  is time; 1 2 3i j, = , , . Besides, ij ij ije ε εδ= −  is a deviation of the deformations ijε ; 

3ij ijε ε δ= /  is a mean deformation; ijδ  is the Kronecker symbol; ij ij ijs σ σδ= −  is a deviation of the 

stresses ijσ ; 3ij ijσ σ δ= /  is a mean stress; 3θ ε=  is a relative variation of the volume; 0G const=  

is an instant elastic shift module; 0K const=  is an instant elastic module of the volume deformation; the 

functions ( )tΓ , ( )U t , ( )L t  and ( )M t  are kernels of the shift creep, volume creep, shift relaxation 

and volume relaxation respectively. 

Relations (1)-(4) are the Volterra second type integral equations. Equations (3) and (4) are derived 

from (1) and (2) by solving them with respect to ijS  and θ . In turn, equations (l) and (2) result from (3) 
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and (4) by solving the last two ones with respect to ijε  and θ . In this case, the functions ( )L t  is a 

resolvent of the kernel ( )tΓ  and ( )M t  is a resolvent of the kernel ( )U t . At the same time, the 

function ( )tΓ  and ( )U t  are resolvents of the kernels ( )L t  and ( )M t , respectively. It is clear that 

relations (1), (2) and (3), (4) are equivalent. Note that between the kernels ( )U t  and ( )M t  there exist 

the following integral relations [4]: 

 ( ) ( ) ( ) ( )
0

t

t L t L t dτ τ τΓ = + − Γ ,∫  (5) 

 ( ) ( ) ( ) ( )
0

t

U t M t M t U dτ τ τ= + − .∫  (6) 

The components of the stress ijσ  satisfy the balance equation 

 0ij j iFσ , + = ,  (7) 

where iF  are volume forces. 

Suppose that surface forces iR  are given on a part Sσ , of the boundary surface, boundary 

displacements 0iu  are given on the remaining part uS : 

 0
u

ij j i i iSS
l R u u

σ
σ = ; = ,  (8) 

where jl  are direction cosines. 

To solve the problem in the displacements iu , the Cauchy geometric relations 

 2ij i j j iu uε  
 , , 

= + / ,  (9) 

should be adjoined to the relations (1),(2) (or (3), (4)), (7), (8). Further to solve the problem in the stresses 

ijσ , instead of (9) it is necessary to use six independent equations of deformations compatibility. By [3], 
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one of the forms has the form 

 0ij kl kl ij ik jl jl ikε ε ε ε, , , ,+ − − = ,  (10) 

where 1 2 3i j k l, , , = , , . 

Solution of the General Quasi-Static Problem of Linear Viscoelasticity Under the 

Conditions Determined 

First, formulate the following lemma [5] without proof. 

Lemma. For the satisfaction of the homogenous equation 

 ( ) ( ) ( )
0

0
t

ij ijt r t dµ τ µ τ τ+ − = ,∫  (11) 

where ( )r t  has some resolvent associated with ( )r t  by relations of the type (5), (6), it is necessary 

and sufficient that 

 ( ) ( )0 1 2 3ij t i jµ = , , = , , .  (12) 

Theorem 1. Let one of the following there conditions hold 1) 0K →∞  (material is mechanically 

uncompressible), 2) 0σ =  (the mean stress is zero, but K < ∞ ) 3) ( ) ( )t U tΓ =  (the kernels of the 

shift and volume creeps coincide) or equivalently, ( ) ( )L t M t=  (the kernels of the shift and volume 

relaxations coincide). Then the exact solution of problems (1), (2) (or (3), (4)), (7)-(10) is represented as 

 ( )
0

t

i i i ij iju u t u dτ τ σ σ′ ′ ′= + Γ − , =∫  (13) 

where iu ′  and ijσ ′ , arc solutions of the following quasi-static problem of elasticity theory: 

 02 ij ijG e s′ ′= ,  (14) 

 0 under conditions 1and 2θ ′ = , ,  (15) 
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or  

 0 under condition 3K θ σ′ ′= , .  (16) 

 00
u

ij i ij j i i iSS
F l R u u

σ
σ σ′ ′ ′+ = , = ; = ,  (17) 

 2 0ij ij ji ij kl kl ij ik jl jl iku uε ε ε ε ε′ ′ ′ ′ ′ ′ ′ 
  , , , , 

= + / , + − − = .  (18) 

The following notation has been accepted: 

 3 3 3ij ij ij ij ij ij ij ij ij ije sε ε δ σ σ δ ε ε δ σ σ δ θ ε′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − , = − , = / , = / , = ,  (19) 

 ( )
0

t

oi oi oiu u L t u dτ τ′ = − − .∫  (20) 

The proof of theorem 1 is performed by direct substitution of formulae (13) into relations involved in 

the statement of the initial problem. In doing so, one should use lemmas (11), (12) and also the accepted 

notation (19), (20). If in the statement of the viscoelasticity problem, (3) and (4) are used as determining 

equations, then it is necessary to take advantage of relations (5), (6). Note that the deformation 

components ijε  are defined by formula 

 ( ) ( )
0

t

ij ij ijt dε ε τ ε τ τ′ ′= + Γ − ,∫  (21) 

where ijε
′  is expressed by iu ′  in the first formula of (18). 

Theorem 2. Let one of conditions 1, 2, 3 of theorem 1 hold. Then the exact solution of problem (1), 

(2) (or (3), (4)), (7)-(10) is represented alternatively to (13) by the formula 

 ( ) ( )
0

t

i i ij ij iju u L t dσ σ τ σ τ τ′′ ′′ ′′= , = − − ,∫  (22) 

where iu ′′ , ijσ ′′  are solutions of the following quasi-static problem of linear elasticity theory: 
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 02 ij ijG e s′′ ′′= ,  (23) 

 0 under conditions 1and 2θ ′′ = , ,  (24) 

or 

 0 under condition 3K θ σ′′ ′′= , .  (25) 

 
1

0
u

ij j i ij j i i oiSS
F l R u u

σ

σ σ′′ ′′ ′′ ′′ ′′+ = , = ; = ,  (26) 

 2 0ij i j j i ij ji kl lk ik jl jl iku uε ε ε ε ε′′ ′′ ′′ ′′ ′′ ′′ ′′ 
 , , , , , , 

= + / , + − − = .  (27) 

The following notation has been accepted: 

 3 3 3ij ij ij ij ij ij ij ij ij ije sε ε δ σ σ δ ε ε δ σ σ δ θ ε′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= − , = − , = / , = / , = ,  (28) 

 ( ) ( )
0 0

t t

i i i i i iF F t F d R R t R dτ τ τ τ′′ ′′= + Γ − ; = + Γ − .∫ ∫  (29) 

The proof of theorem 2 is performed by the direct substitution of formula (22) into all the necessary 

relations. In this case, notation (28), (29), lemma (11), (12) and also relations (5), (6) between the 

resolvent functions. 

Let now a solution of the elasticity problem is known with respect to the volume force e
iF , the 

surface force e
iR  and the boundary displacement e

iu : e e e e e
i i i i oiu u F R u 

 
 

= , , , e e e e e
ij ij i i oiF R uε ε  

 
 

= , , , 

e e e e e
ij ij i i oiF R uσ σ  

 
 

= , , . By using theorem 1 and changing e e
i iF R,  and e

oiu  to i iF R,  and oiu ′ , 

respectively, we determine iu ′ , ijε
′ , e

ij i i i i oiu u F R uσ ′ ′ ′ 
 
 

: = , , , e
ij ij i i oiF R uε ε′ ′ 

 
 

= , , , 

e
ij ij i i oiF R uσ σ′ ′ 

 
 

= , , , where oiu ′  is defined in (20). 

It is also necessary to make change of the elasticity module G  and K , to 0G  and 0K , 

respectively. After determining the quantities iu ′ , ijε
′ , ijσ ′ , by formula (13), we find the sought - for iu , 
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ijσ . Sought - for components of the deformation tensor ijε  are determined by formula (21). If we make 

use of the theorem 2, the quantities ou ′′ , ijε
′′ , ijσ ′′  will be: e

i i i i oiu u F R u′′ ′′ ′′ 
 
 

= , , , e
ij ij i i oiF R uε ε′′ ′′ ′′ 

 
 

= , , , 

e
i i i i oiF R uσ σ′′ ′′ ′′ 

 
 

= , , , where i iF R′′ ′′,  are defined by formula (29). In this case, the change of the 

corresponding material constants is also necessary. After finding iu ′′ , ijε
′′ , ijσ ′′ , we determine the sought - 

for quantities iu , ijσ  from formula (22). The sought – for components of the deformation will be: 

ij ijε ε ′′= . 

2. Application 

Solving the Problem of Linear Torsion of a Prismatic Viscoelastic Solid with an Arbitrary 

Cross Section 

The problem of linear torsion of a prismatic viscoelastic solid serves a good example for applications 

of the above - formulated theorems. Because in this case, one of the conditions of these theorems, namely 

the condition that the mean stress is zero, is fulfilled. 

Let the forces leading to braiding couples, re applied to the base of a prismatic viscoelastic solid with 

an arbitrary cross section. We will suppose that the side surface of the solid is free of external forces and 

volume forces me abscent. Mechanical properties of the material of a prismatic solid are characterized by 

relations (1), (2) or (3), (4) of linear viscoelasticity theory. 

We use the Cartesian coordinate system ( )1 2 3x x x, , . Direct the axis 3x  parallel to the axis of the 

prismatic solid. At not constrained (pure) torsion of a prismatic viscoelastic solid with an arbitrary cross 

section, according to Saint-Venant we consider that in a fixed period of time 1) equally distant cross 

sections twist at the same angles; 2) all the cross sections are equally bent; deplanatiens ( )3u  

proportionally depending n  time of torsional angle are emerged, which is allowable in linear torsion. 

Write out mathematically the mentioned assumptions in the form: 

 ( ) ( ) ( ) ( )1 2 3 2 1 3 3 1 2u t x x u t x x u t x xγ γ γ ϕ= − ; = ; = , .  (30) 
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Here ( )1 2x xϕ ,  is a function of deplanation, ( )tγ γ=  is a relative angle of torsion at the instant of 

time t . In case of ( )t constγ ≡ , relations (30) coincide with the corresponding relations of Saint-Venant 

[6]. 

Using properties of heredity, which are applicable to viscoelastic solids, we represent the function 

( )tγ  in the form 

 ( ) ( ) ( ) ( )
0

t

t t t t dγ ϑ τ ϑ τ= + Γ − ,∫  (31) 

where ( )tϑ  is some of time function to be determined. 

Considering (30) in (9), we have 

 11 22 33 12 0ε ε ε ε= = = = ;  (32) 

 
( ) ( )

13 2 23 1
1 22 2

t t
x x

x x
γ γϕ ϕε ε

   
   
   
      
   

∂ ∂
= − ; = + .

∂ ∂
 (33) 

Using relations (32), (33) in equations (3), (4), determine the quantities ijσ : 

 11 22 33 12 0σ σ σ σ σ= = = = = ;  (34) 

 ( ) ( ) ( )13 0 2
1 0

t

G x t R t t d
x
ϕσ γ τ γ τ

 
 
 
  
 

 ∂
= − − − ; ∂  

∫  (35) 

 ( ) ( ) ( )23 0 1
2 0

t

G x t R t t d
x
ϕσ γ τ γ τ

 
 
 
  
 

 ∂
= + − − . ∂  

∫  (36) 

Taking into account (31) and (5), relations (35) and (36) turn into the form 

 ( ) ( )13 0 2 23 0 2
1 2

G x t G x t
x x
ϕ ϕσ ϑ σ ϑ

   
   
   
      
   

∂ ∂
= − , = + .

∂ ∂
 (37) 

From the balance equations only the followings are omitted: 
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 13 23 13 23

3 3 1 2

0 0 0
x x x x
σ σ σ σ∂ ∂ ∂ ∂

= , = , + = .
∂ ∂ ∂ ∂

 (38) 

The first two equations of (38) are satisfied as an identity the thir4 if (37) is taken into account, yields 

 
2 2

2 2
1 2

0
x x
ϕ ϕ ϕ∂ ∂
+ ≡ ∇ = .

∂ ∂
 (39) 

Formula (39) shows that on the domain occupied by the cross section of solid the deplanetion 

function ( )1 2x xϕ ,  must be a harmonic function of the variables 1x  and 2x . It follows from the last 

argument that the deplanation itself should also be a harmonic function. 

In the considered case, as in theory of elastic torsion, it can be shown that on contour Ω  of the cross 

section, the deplanation function p  satisfies the condition 

 ( ) ( )2 1 1 2cos cosx n x x n x
n
ϕ  

  Ω

∂
= , − ,

∂
  

or 

 
2 2
1 2

2
x xd

n ds
ϕ

Ω

 +∂
= , ∂  

 (40) 

where d
dn , d

ds  are derivatives with respect to the normal n  and the are Ω  respectively. 

Thus, the problem of viscoelastic prismatic solid’s torsion, in similar way as the problem of elastic 

solid’s torsion, is reduced to the Neuman problem (39), (40) for Laplaee equation. In this case, it can be 

shown that existence conditions for a solution of the Neuman problem 0n dsϕ∂
∂

Ω

=∫  are fulfilled. 

For stresses equally acting on the face surface we have 

 13 230 0d dω σ ω ω σ ω= , = ,∫ ∫  (41) 

where ω  is an area of the cross section of a prismatic solid. 

Taking (41) into account, we come to a conclusion that tangent stresses applied to the cross section 

are reduced to a pair of force which has the moment 
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 ( ) ( )1 23 2 13M t x x dω σ σ ω= − .∫  (42) 

The balance condition on the face surface gives ( ) ( )TM t M t= , where ( )TM t  is the given 

twisting moment. Considering this and formulas (37) in relation (42), we obtain that 

 ( ) ( )TM t
t

D
ϑ =  (43) 

where ( )
2 1

2 2
0 1 2 1 2x xD G x x x x dϕ ϕω ω∂ ∂

∂ ∂= + + −∫  is a rigidity in torsion. It can be show that always 

0D > . 

Therefore, the problem of physical linear torsion of a viscoelastic prismatic solid is completely 

solved if we find the deplanation function ( )1 2x xϕ , . 

Now represent the solution of linear torsion problem in the form (13). In this case the quantities ijε  

and ijε
′  are expressed by formulas (21) and the first formula of (18), respectively. 

The balance equations (38), in view of the second formula of (13), maintain their form: 

 13 23 13 23

3 3 1 2

0 0 0
x x x x
σ σ σ σ′ ′ ′ ′∂ ∂ ∂ ∂

= , = , + = .
∂ ∂ ∂ ∂

 (44) 

Besides, from (34) and (37) we obtain: 

 11 22 33 12 0σ σ σ σ σ′ ′ ′ ′ ′= = = = =   

 ( ) ( )13 0 2 23 0 1
1 2

G x t G x t
x x
ϕ ϕσ ϑ σ ϑ

   
   ′ ′
   
      
   

∂ ∂
= − , = + .

∂ ∂
 (45) 

Using (21) and (31), formulas (32) and (33) are converted into the form 

 11 22 33 12 0ε ε ε ε′ ′ ′ ′= = = =   

 
( ) ( )

13 2 23 1
1 22 2

t t
x x

x x
ϑ ϑϕ ϕε ε

   
   ′ ′
   
      
   

∂ ∂
= − , = + .

∂ ∂
 (46) 
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From formula (30) for components of the displacement vector, in view of the first formula of (13) and 

also formula (31), it follows that 

 ( ) ( ) ( ) ( )1 2 3 2 1 3 3 1 2u t x x u t x x u t x xϑ ϑ ϑ ϕ′ ′ ′= − ; = ; = .  (47) 

Relation (42) with consideration of formula (13) will be written in the form 

 ( ) ( ) 1 23 2 13TM t M t x x dω σ σ ω′ ′ 
 
 

= = −∫  (48) 

Relation (43) does not change its form. 

As we see, relations (43)-(48) are relations of elastic quasi-static torsion theory. This means that as 

applied to the problem to torsion, the quantities   i iju σ′ ′,  and ijε
′  involved in formulas (13), (21) are 

components of displacement vector, stress tensors and deformations, respectively, which appear in the 

considered prismatic solid while its quasi-static elastic torsion with the torsion moment ( )TM t . In this 

case, t  plays the role of only a parameter. 

Therefore, if by any one of the existing methods, the problem of elastic torsion of a prismatic solid 

with the given cross section has been solved under the condition that the displacement module G  and 

the torsion moment M  are known, that is the elastic displacements e
iu , deformations e

ijε , stresses e
ijσ  

have been found then by changing G  to 0G , M  to ( )TM t  in the expressions of e
iu , e

ijε , e
ijσ , we 

find the quantities iu ′ , ijε
′ , ijσ ′ . Thereafter according to formulas (13) and (21), we determine the sought 

for solution of the corresponding problem of viscoelasticity. 

At this point remark that by [6], while solving the considered problems of elastic and viscoelastic 

torsion, instead of the deplanation function ϕ  one can use either the harmonic function ψ , conjugate to 

ϕ , or the Prandtle torsion function Φ  which is associated with ψ  by the relation 

( ) ( ) 2 2
1 2 1 2 1 2 2x x x x x xψ  

 
 

Φ , = , − + / . In this case, as is known from [6], the problems of determining the 

functions ( )1 2x xψ ,  and ( )1 2x xΦ ,  are the Dirichlet problems for Laplace’s equation. When solving the 

mentioned problems, the complex function of torsion [6] can also be used. 
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3. Examples 

1. Torsion of a Prismatic Beam with an Elliptic Cross Section 

Let a  and b  be semiaxes of an ellipse. We draw on the solution of the corresponding problem of 

elastictty [6]: 

 
2 2 2 2

2 3 1 3
1 23 3 3 3
e e

M a b x x M a b x x
u u

G a b G a bπ π

   
   
   

+ +
= − , =   

 
2 2

1 2
3 13 2 23 13 3 3 3

2 2e e e
M b a x x M Mu x x

G a b ab a b
σ σ

π π π

 
 
 

−
= ; = − ; = ,   

where G  is a module of the material shift, M  is a moment of torsion. 

Replacing in the last expressions G  by 0G , M  by ( )TM t , we will have expressions for the 

quantities 1u ′ , 2u ′ , 3u ′ , 13σ ′ , 23σ ′ . Considering the obtained expression in transitional formula (13), 

write out the solution to the problem of torsion of an viscoelastic prismatic solid with an elliptic cross 

section: 

 ( ) ( )
2 2 2 2

2 3 1 3
1 23 3 3 3

0 0
T T

a b x x a b x x
u M t u M t

G a b G a bπ π

   
   ∗ ∗   

+ +
= − ; = ;   

 ( ) ( ) ( )2 2
1 2

3 13 2 23 13 3 3 3
0

2 2T T
T

b a x x M t M t
u M t x x

G a b ab a b
σ σ

π π π

 
  ∗ 

−
= ; = − ; = .   

Here 

 ( ) ( ) ( ) ( )
0

t

T T TM t M t t M dτ τ τ∗ = + Γ − .∫  (49) 

In case of a b= , the obtained solution corresponds to the solution of the torsion problem related to a 

viscoelastic prismatic solid with a circular cross section. In this case, 3 0u = , which shows an absence of 

deplanation. 
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2. Round Prismatic Beam with a Semicircular Longitudinal Bore 

According to [6], the solution to the problem of elasticity is represented in the form 

 
2

2 3 1 3 2
1 2 34 4 3 2 2

1 22 2 2
e e eMx x Mx x Mb xu u u

GDa GDa GDa x x 
 
 

= − ; = ; = − ;
+

  

 
( )22

1 21 2
13 2 23 12 24 42 2 2 2

1 2 1 2

2
2 2

e e ab x xab x xM Mx x a
Da Dax x x x

σ σ
 
 
 
 
    
        

 − = − ; = − + − .
 + + 

  

Here, as in the previous problem, G  is a module of the material shift, M  is a moment of torsion, 

a  is a radius of the beam disk, b  is a radius of the bore disk. Besides, 

 ( ) ( )
2 31 1 4sin 4 8sin 2 12 sin 2 2 sin

24 2 3
b bD a
a a

α α α α α   = + + − + + ,   
   

  

where ( )2arccos b
aα = . 

Now to obtain a solution to the problem of torsion of a circular viscoelastic beam with a semicircular 

longitudinal bore, replace G  by 0G , M  by ( )TM t  in the represented solution of the problem of 

elasticity and use formula (13).  

Then we obtain: 

 
2

2 3 1 3 2
1 2 34 4 3 2 2

0 0 0 1 22 2 2T T T
x x x x b xu M u M u M

G Da G Da G Da x x
∗ ∗ ∗

 
 
 

= − ; = ; = −
+

  

 
( ) ( ) 2 2 22

1 21 2
13 2 23 12 24 42 2 2 2

1 2 1 2

2
2 2

T T ab x xM t M tab x x x x a
Da Dax x x x

σ σ
         
 
    
        

 −
 = − ; = − + − .
 + + 

  

The operator 3u  involved in these relations has the form (49). 
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4. Remarks 

The problem of torsion of a prismatic viscoelastic solid with an arbitrary simply connected cross 

section has been solved. Problems of viscoelasticity for prismatic solids with multiply connected cross 

sections can be solved in the similar way. 

5. Conclusion 

l. Formulas reducing solutions of the general quasi-static problem of linear viscoelasticity for an 

isotropic and homogeneous solid to a solution of the corresponding problem of elasticity theory are 

presented. These formulas are valid if one of the following conditions holds: l) the material is close to a 

mechanically uncompressible matenal; 2) the mean stress is zero; 3) the shift and volume hereditary 

functions are equal. They provide a free conversion from the problem of viscoelasticity to the problem of 

elasticity and vice versa. This quality makes them convenient in applications. 

2. The obtained result has been applied to a solution of the problem of pure torsion for a prismatic 

viscoelastic solid with an arbitrary simply connected cross section. Examples describing the construction 

procedure for a solution of the problem of viscoelasticity from the known solutions of the corresponding 

problem of elasticity have been presented. 
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