On the New Type Almost Sequence Space

Ziyattin TAŞ
Department of Mathematics, Faculty of Art and Science, University of Bingöl, 12000, Bingöl, Turkey.
Zarife ZARARSIZ
Department of Mathematics, Faculty of Art and Science, University of Nevşehir Hacı Bektas, Veli, 50300,
Nevşehir, Turkey.

Abstract

In this paper, we introduce $t r f$ sequence spaces by means of the matrix domain of $B(r, s, t)$ triple band matrix and f_{T} defined by Zararsiz [9]. Furthermore, we determine β - and γ - duals of the space $t r f$ and characterize the classes $\left(\operatorname{trf}: \ell_{\infty}\right),(\operatorname{trf}: c),\left(\ell_{\infty}: \operatorname{trf}\right)$ and $(c: t r f)$.

Keywords: Almost convergence, β - and γ-duals, matrix domain of a sequence space, isomorphism.

1. Preliminaries, Background and the Notation

The notion of almost convergence was introduced by Lorentz [5]. It impressed mathematicians to construct several types of classes of sequence spaces. Throughout the paper, w, the space of all complex valued sequences, is called a sequence space. The notations $\ell_{\infty}, c, c_{0}, \ell_{p}, f$ and f_{0} are showed for the sequence spaces of all bounded, convergent, null, absolutely p-summable, almost convergent and almost null convergent sequences, respectively. Also by $b s$ and $c s$, we denote the spaces of all bounded and convergent series, respectively. Let λ and μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where n, k are positive integers. Then, A defines a matrix mapping from λ to μ and is denoted by $A: \lambda \rightarrow \mu$ if for every sequence $x=\left(x_{k}\right) \in \lambda$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A transform of x, is in μ where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, n \in \mathbb{N} . \tag{1}
\end{equation*}
$$

By $(\lambda: \mu)$, we denote the class of matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right side of (1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. The domain λ_{A} of an infinite matrix A in a sequence space λ is defined by

$$
\lambda_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in \lambda\right\} .
$$

For brevity in notation, through all the text, we shall write $\sum_{n}, \sup _{n}, \lim _{n}$ and $\Delta a_{n k}$ instead of $\sum_{n=0}^{\infty}, \sup _{n \in \mathbb{N}}, \lim _{n \rightarrow \infty}$ and $a_{n k}-a_{n, k+1}$. Furthermore, we write \mathbb{R} and \mathbb{C} for the set of real or complex valued numbers, respectively.

The Cesàro matrix of order one which is a lower triangular matrix defined by the matrix $C=\left(c_{n k}\right)$ as follows:

$$
c_{n k}=\left\{\begin{array}{cc}
\frac{1}{n+1} & , \quad 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$.

One of the best known regular matrix is $R=\left(r_{n k}\right)$, the Riesz matrix which is a lower triangular matrix defined by

$$
r_{n k}=\left\{\begin{array}{cc}
\frac{r_{k}}{R_{n}}, & 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$, where $\left(r_{k}\right)$ is real sequence with $r_{0}>0, r_{k} \geq 0$ and $R_{n}=\sum_{k=0}^{n} r_{k}$. The Riesz matrix R is regular if and only if $R_{n} \rightarrow \infty$ as $n \rightarrow \infty$, [7].

Let r, s and t be non-zero real numbers, and define the triple matrix $B(r, s, t)=\left\{b_{n k}(r, s, t)\right\}$ for all $k, n \in \mathbb{N}$ as follows:

$$
b_{n k}(r, s, t)=\left\{\begin{array}{lc}
r, & \mathrm{k}=\mathrm{n} \\
s, & \mathrm{k}=\mathrm{n}-1 \\
t, & \mathrm{k}=\mathrm{n}-2 \\
0, & \text { otherwise }
\end{array}\right.
$$

It is easy to calculate that the inverse $B^{-1}(r, s, t)=\left\{b_{n k}^{-1}(r, s, t)\right\}$ of the triple band matrix is given by

$$
\left\{b_{n k}^{-1}(r, s, t)\right\}=\left\{\begin{array}{cc}
\frac{1}{r} \sum_{m=0}^{n-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{n-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m}, & 0 \leq k \leq n \\
0, & k>n
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. If we consider of the value $t=0$, then we obtain $B(r, s, t)=B(r, s)$ named difference generalized matrix. From here, the consequences concern to matrix domain of the $B(r, s, t)$ are more extensive than the results of Zararsız [8].

The rest of the present paper is organized, as in the following:

2. Almost Convergent Sequences Space f

In this section, we deal with almost convergent sequences space f. We begin with writing some required definitions and lemma by means of Lorentz [5].

The shift operator S on ℓ_{∞} is defined by $(S x)_{n}=x_{n+1}$ for all $n \in \mathbb{N}$. A Banach limit L is a non-negative linear functional on ℓ_{∞} satisfying $L(S x)=L(x)$ and $L(e)=1$ where $e=(1,1,1, \ldots)$. Any bounded sequence is called almost convergent to the generalized limit a if all Banach limits of the sequence x are equal to a [5]. This is denoted by $f-\lim x=a$. It is given by Lorentz [5] that
$f-\lim x=a$ if and only if $\lim _{p} \frac{\left(x_{n}+x_{n+1}+\ldots+x_{n+p-1}\right)}{p}=a$, uniformly in n. By f and f_{0}, we denote the space of all almost convergent and almost null sequences, respectively, i.e.,

$$
f=\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \exists a \in \mathbb{C} \ni \lim _{m} \sum_{k=0}^{m} \frac{x_{n+k}}{m+1}=a \text {, uni.in } n\right\}
$$

and

$$
f_{0}=\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \lim _{m} \sum_{k=0}^{m} \frac{x_{n+k}}{m+1}=0 \text {, uni.in } n\right\} .
$$

Lorentz [6] obtained the necessary and sufficient conditions for an infinite matrix to contain f in its convergence domain. These conditions are standard Silverman Toeplitz conditions for regularity and plus the following condition

$$
\begin{equation*}
\lim _{n} \sum_{k=0}^{\infty}\left|a_{n k}-a_{n, k+1}\right|=0 . \tag{2}
\end{equation*}
$$

A matrix U is called the generalized Cesàro matrix if it is obtained from the matrix C by shifting rows. Let $\theta: \mathbb{N} \rightarrow \mathbb{N}$. Then $U=\left(u_{n k}\right)$ is defined by

$$
u_{n k}=\left\{\begin{array}{cc}
\frac{1}{n+1}, & \theta(n) \leq k \leq \theta(n)+n \\
0, & \text { otherwise }
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$.
Let us suppose that G is the set of all such matrices obtained by using all possible functions θ. Now, right here, let's give a new lemma for the set of almost convergent sequences which was given by Butkovic, Kraljevic and Sarapa, [4]:

Lemma 1. The set f of all almost convergent sequences is equal to the set $\cap_{U \in G} c_{U}$.

3. The Sequence Spaces $t r f$ Derived by the Domain of the Triple Band Matrix

In this section, we wish to introduce the new spaces trf and $\operatorname{trf} f_{0}$ as the sets of all sequences such that their $B(r, s, t)$ transforms are in the spaces $r f$ and $r f_{0}$, respectively. Later, we give an isomorphism between the spaces $t r f, \operatorname{trf} f_{0}$ and $r f, r f_{0}$, respectively. Furthermore, we define a norm on the spaces trf and $\operatorname{tr} f_{0}$ and show that these spaces are Banach with this norm. Finally, we investigate some algebraic properties on the spaces $r f$ and $r f_{0}$ and trf and $\operatorname{tr} f_{0}$.

The definition of almost convergence can be defined as the intersection of convergence field that is obtained by displacement of the lines of first-order Cesàro matrix. Let $v \in \mathbb{N}$ and $x=\left(x_{k}\right) \in \ell_{\infty}$. Let us define the matrix $S^{v}=\left(s_{n k}^{v}\right)$ as follows:

$$
s_{n k}^{v}=\left\{\begin{array}{lc}
1, & n+v=k \\
0 & , \quad \text { others }
\end{array}\right.
$$

The sequence $\left(S^{v} x\right)=\left(S^{0} x, S^{1} x, S^{2} x, \ldots, S^{v} x, \ldots\right)$ named shifted transforms sequence of x, is obtained by S. Thus, almost convergence has the same meaning with the convergence of first-order Cesàro average of the shifted transform sequence $\left(S^{v} x\right)=\left(S^{0} x, S^{1} x, S^{2} x, \ldots, S^{v} x, \ldots\right)$ to a fixed sequence for each v. After these, we can generalize the set of almost convergent and almost null sequence spaces by the following sequence spaces called as the set of all T - convergent and null T - convergent sequences, respectively:

$$
\begin{gathered}
f_{T}=\left\{x \in \ell_{\infty}: \lim _{k}\left[T\left(S^{v} x\right)\right]_{k}=\ell \in \mathbb{C}, v=0,1,2, \ldots\right\} \\
f_{T_{0}}=\left\{x \in \ell_{\infty}: \lim _{k}\left[T\left(S^{v} x\right)\right]_{k}=0, v=0,1,2, \ldots\right\} .
\end{gathered}
$$

By taking $R=\left(r_{n k}\right)$ instead of matrix T on the sets f_{T} and $f_{T_{0}}$, respectively, $r f$ - convergent and null $r f$ - convergent sequences spaces are defined by Zararsiz [8] as follows, i.e.,

$$
\begin{gather*}
r f=\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} r_{k} x_{k+n}=a \text {, uni.in } n\right\} \tag{3}\\
r f_{0}=\left\{x=\left(x_{k}\right) \in \ell_{\infty}: \lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} r_{k} x_{k+n}=0 \text {, uniformly in } n\right\} \tag{4}
\end{gather*}
$$

Now, we define two original spaces of convergent sequences, showed as trf and $\operatorname{tr} f_{0}$ as the sets of all sequences such that their $B(r, s, t)$ - transforms are in the spaces $r f$ and $r f_{0}$, respectively, it means that;

$$
\begin{align*}
& \operatorname{trf}=\left\{x=\left(x_{k}\right) \in w: \lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} U(n, k)=a, \text { uni.in } n\right\} \tag{5}\\
& \operatorname{trf} f_{0}=\left\{x=\left(x_{k}\right) \in w: \lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} U(n, k)=0, \text { uni.in } n\right\}, \tag{6}
\end{align*}
$$

where $U(n, k)=r_{k}\left[t x_{k+n-2}+s x_{k+n-1}+r x_{k+n}\right]$.
Let us define the sequence $y=\left(y_{k}\right)$, as the $B(r, s, t)$ - transform of a sequence $x=\left(x_{k}\right)$ as follows:

$$
\begin{equation*}
y_{k}=t x_{k-2}+s x_{k-1}+r x_{k},(k \in \mathbb{N}) . \tag{7}
\end{equation*}
$$

Now, we give a Lemma as follows which is necessary for us:
Lemma 2. [8] The sets $r f$ and $r f_{0}$ are Banach spaces with the norm

$$
\begin{equation*}
\|x\|_{r f}=\|x\|_{r f_{0}}=\sup _{m}\left|\frac{1}{R_{m}} \sum_{k=0}^{m} r_{k} x_{k+n}\right| \text {, uniformly in } n . \tag{8}
\end{equation*}
$$

Corollary 1. [8] The space $r f$ has no Schauder basis.

Theorem 1. Define the norm on the sets trf and $\operatorname{tr} f_{0}$ as follows:

$$
\begin{equation*}
\|x\|=\sup _{m}\left|\frac{1}{R_{m}} \sum_{k=0}^{m} r_{k}\left[t x_{k+n-2}+s x_{k+n-1}+r x_{k+n}\right]\right| \text {, uniformly in } n . \tag{9}
\end{equation*}
$$

Then the sets trf and $\operatorname{tr} f_{0}$ are linear spaces with the co-ordinatewise addition and scalar multiplication.

Proof. It is clear the property of that $r f$ and $r f_{0}$ are Banach spaces and $B(r, s, t)$ is normal matrix.

Theorem 2. The sequence spaces $r f$ and $r f_{0}$ are linearly isomorphic to the spaces trf and $\operatorname{trf_{0}}$, respectively.

Proof. Consider the transformation F defined using the notation of (7), from trf to $r f$, by $x \rightarrow y=F x$. The linearity of F is clear. Let $y=\left(y_{k}\right) \in r f$ and define the sequence $x=\left(x_{k}\right)$ by $\left(\left\{B^{-1}(r, s, t) y\right\}\right)_{k}$ for all $k \in \mathbb{N}$. Then, it is clear that;

$$
\{B(r, s, t) x\}_{k}=t x_{k-2}+s x_{k-1}+r x_{k}=y_{k}
$$

for all $k \in \mathbb{N}$ which shows that

$$
\begin{gather*}
f-\lim \{B(r, s, t) x\}_{k}=\lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} r_{k}\left(t x_{k-2}+s x_{k-1}+r x_{k}\right) \tag{10}\\
=\lim _{m} \frac{1}{R_{m}} \sum_{k=0}^{m} r_{k} y_{k+n} \tag{11}\\
=\text { trf }-\lim y_{k}, \text { uniformly in } n . \tag{12}
\end{gather*}
$$

It means that $x=\left(x_{k}\right) \in \operatorname{trf}$. Namely, F is surjective. Because of the fact that F is a linear bijection, trf and $r f$ are linearly isomorphic. This completes the proof. \square

4. Duals

In this section, we determine the β - and γ-duals of the spaces trf and $\operatorname{tr} f_{0}$. For the sequence spaces λ and μ, define the set $S(\lambda, \mu)$ by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x=\left(x_{k}\right) \in \lambda\right\} . \tag{13}
\end{equation*}
$$

If we take $\mu=\ell_{1}$ then the set $S\left(\lambda, \ell_{1}\right)$ is called α-dual of λ and similarly the sets $S(\lambda, c s)$, $S(\lambda, b s)$ are called β-and γ-duals of λ and denoted by $\lambda^{\beta}, \lambda^{\gamma}$, respectively.

We can give the following lemmas and proposition which will be used in the computation of the β dual of the sets trf and $\operatorname{tr} f_{0}$.

Lemma 3. [1] Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then $A \in\left(r f: \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty . \tag{14}
\end{equation*}
$$

Proposition 1. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then $A \in(r f: c)$ if and only if

$$
\begin{gather*}
\lim _{n} \sum_{k} a_{n k}=a, a \in \mathbb{R} \tag{15}\\
\lim _{n} a_{n k}=a_{k},\left(a_{k} \in \mathbb{C}, k \in \mathbb{N}\right), \tag{16}\\
\lim _{n} \sum_{k}\left|\Delta\left(a_{n k}-a_{k}\right)\right|=0 \tag{17}
\end{gather*}
$$

hold.
Lemma 4. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then $A \in\left(\ell_{\infty}: r f\right)$ if and only if (14) and

$$
\begin{gather*}
r f-\lim _{n} a_{n k}=a_{k}, \forall k \in \mathbb{N} \tag{18}\\
\lim _{m} \sum_{k}\left|\frac{1}{R_{m}} \sum_{i=0}^{m} r_{i} a_{n+i, k}-a_{k}\right|=0, \text { uniformlyin } n \tag{19}
\end{gather*}
$$

hold.
Lemma 5. Let $A=\left(a_{n k}\right)$ be an infinite matrix for all $k, n \in \mathbb{N}$. Then $A \in(c: r f)$ if and only if

$$
\begin{gather*}
\sup _{m} \sum_{k}\left|\frac{1}{R_{m}} \sum_{i=0}^{m} r_{i} a_{i k}\right|<\infty,(k, m \in \mathbb{N}), \tag{20}\\
\lim _{m} \frac{1}{R_{m}} \sum_{i=0}^{m} r_{i} a_{n+i, k}=a_{k}, \text { uniformly in } n,\left(a_{k} \in \mathbb{C}\right) \tag{21}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{m} \frac{1}{R_{m}} \sum_{k} \sum_{i=0}^{m} r_{i} a_{n+i, k}=a, \text { uniformly in } n, \tag{22}
\end{equation*}
$$

hold.
Lemma 6. [1] Let $D=\left(d_{n k}\right)$ be defined via a sequence $a=\left(a_{k}\right) \in w$ and the inverse matrix $V=\left(v_{n k}\right)$ of the triangle matrix $U=\left(u_{n k}\right)$ by

$$
d_{n k}=\left\{\begin{array}{cc}
\sum_{j=k}^{n} a_{j} v_{j k} & , \quad 0 \leq k \leq n, \\
0 & , \quad k>n
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. Then,

$$
\left\{\lambda_{U}\right\}^{\gamma}=\left\{a=\left(a_{k}\right) \in w: D \in\left(\lambda: \ell_{\infty}\right)\right\}
$$

and

$$
\left\{\lambda_{U}\right\}^{\beta}=\left\{a=\left(a_{k}\right) \in w: D \in(\lambda: c)\right\}
$$

Theorem 3. The γ-dual of the space trf is the set d_{1}, where

$$
\begin{equation*}
d_{1}=\left\{\left(a_{k}\right) \in w: \sup _{n} \sum_{k=0}^{n}\left|\sum_{j=k}^{n} b_{j k}^{-1} a_{j}\right|\right\} \tag{23}
\end{equation*}
$$

Proof. The proof of the theorem is clear, so we omit it.

Theorem 4. Let us write the sets d_{2}, d_{3}, d_{4} and d_{5} by

$$
\begin{gather*}
d_{2}=\left\{\left(a_{k}\right) \in w: \lim _{n} \sum_{j=k}^{n} b_{j k}^{-1} a_{j} \text { exists }\right\}, \tag{24}\\
d_{3}=\left\{\left(a_{k}\right) \in w: \lim _{n} \sum_{k=0}^{n}\left[\sum_{j=0}^{k} b_{j k}^{-1}\right] a_{k} \text { exists }\right\}, \tag{25}\\
d_{4}=\left\{\left(a_{k}\right) \in w: \lim _{n} \sum_{k=0}^{n}\left|\sum_{j=n}^{\infty} b_{j k}^{-1} a_{j}\right|=0\right\}, \tag{26}\\
d_{5}=\left\{\left(a_{k}\right) \in w: \lim _{n} \sum_{k=n+1}^{\infty}\left|\sum_{j=n+1}^{\infty}\left(b_{j k}^{-1}-b_{j, k+1}^{-1}\right) a_{j}\right|=0\right\}, \tag{27}
\end{gather*}
$$

for all $j, k \in \mathbb{N}$. Then, $\{t r f\}^{\beta}=\bigcap_{i=1}^{5} d_{i}$.
Proof. Define the matrix $V=\left(v_{n k}\right)$ via the sequence $u=\left(u_{k}\right) \in w$ by

$$
v_{n k}=\left\{\begin{array}{cc}
\sum_{j=k}^{n} b_{j k}^{-1} u_{j} & , \quad(0 \leq k \leq n), \\
0 & ,
\end{array}\right.
$$

for all $n, k \in \mathbb{N}$. By considering the relation $x_{k}=\sum_{j=k}^{n} b_{j k}^{-1} y_{j}$, we realize that

$$
\begin{equation*}
\sum_{k=0}^{n} u_{k} x_{k}=\sum_{k=0}^{n} \sum_{j=k}^{n} b_{j k}^{-1} u_{j} y_{k}=(V y)_{n},(n \in \mathbb{N}) . \tag{28}
\end{equation*}
$$

From (28), we see that $u x=\left(u_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in \operatorname{trf}$ if and only if $V y \in c$ whenever $y=\left(y_{k}\right) \in r f$. Then, we derive by Proposition 1 that $\operatorname{trf} f^{\beta}=\bigcap_{i=1}^{5} d_{i}$. \square

5. Some Matrix Transformations Related to the Sequence Space trf

Dual summability methods are used by many authors, such as Başar [2], Başar and Çolak [3], Lorentz and Zeller [6]. Now, we review to these methods following Başar [2].

Let us suppose that the sequences $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ are connected with (7) and let A transform of the sequence $x=\left(x_{k}\right)$ be $z=\left(z_{k}\right)$ and B - transform of the sequence $y=\left(y_{k}\right)$ be $p=\left(p_{k}\right)$, i.e.,

$$
\begin{equation*}
z_{k}=(A x)_{k}=\sum_{k} a_{n k} x_{k}, \quad(k \in \mathbb{N}) \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}=(B y)_{k}=\sum_{k} b_{n k} y_{k},(k \in \mathbb{N}) . \tag{30}
\end{equation*}
$$

Method B is applied to the $B(r, s, t)$-transform of the sequence $x=\left(x_{k}\right)$ while the method A is directly applied to the terms of the sequence $x=\left(x_{k}\right)$. From here, it is clear that A and B are essentially different [2].

Let us suppose that the matrix product $B B(r, s, t)$ exists. If z_{k} turns into p_{k} (or vice versa), under the application of the formal summation by parts, then the methods A and B as in (29) and (30) are named triple dual type matrices. It means that $B B(r, s, t)$ exists and is equal to A. This condition is equivalent to the following equations:

$$
\begin{equation*}
b_{n k}=\sum_{j=k}^{\infty} \frac{1}{r} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j} \quad \text { or } \quad a_{n k}=t b_{n, k-2}+s b_{n, k-1}+r b_{n k} \tag{31}
\end{equation*}
$$

for all $n, k \in \mathbb{N}$.

Now we may give the following theorem concerning to the triple dual matrices:
Theorem 5. Let $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ be the dual matrices of the new type and λ be any given sequence space. Then, $A \in(\operatorname{trf}: \lambda)$ if and only if $\left\{a_{n k}\right\}_{k \in N} \in \operatorname{tr} f^{\beta}$ for all $n \in \mathbb{N}$ and $E \in(r f: \lambda)$.

Proof. Let λ be any sequence space and $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are triple dual matrices, that is to say that (31) holds. Furthermore, bearing in mind that the spaces trf and $r f$ are isomorphic.

Let $A \in(t r f: \lambda)$ and $y=\left(y_{k}\right) \in r f$. Then $E B(r, s, t)$ presents and $\left(a_{n k}\right)_{k \in N} \in \bigcap_{i=1}^{5} d_{i}$. It means that $\left(e_{n k}\right)_{k \in N} \in \ell_{1}$ for each $n \in \mathbb{N}$. From here, Ey exists and following equation holds;

$$
\begin{equation*}
\sum_{k} e_{n k} y_{k}=\sum_{k} a_{n k} x_{k} \tag{32}
\end{equation*}
$$

for all $n \in \mathbb{N}$, which concluded that $E \in(r f: \lambda)$. On the contrary, let $\left(a_{n k}\right)_{k \in N} \in \operatorname{trf} f^{\beta}$ for each $n \in \mathbb{N}$ and $E \in(r f: \lambda)$, and take any $x=\left(x_{k}\right) \in \operatorname{trf}$. From here, it is clear that $A x$ exists. Thus, we attain from the following equality for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=0}^{m} a_{n k} x_{k}=\sum_{k=0}^{m} \sum_{j=k}^{m} b_{j k}^{-1} a_{n j} y_{k}=\sum_{k=0}^{m} b_{n k} y_{k}, \tag{33}
\end{equation*}
$$

as $m \rightarrow \infty$ that $A x=E y$, and it is easy to show that $A \in(\operatorname{trf}: \lambda)$. This step completes the proof.

Theorem 6. Let us assume that the components of the infinite matrices $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are connected with the following relation

$$
\begin{equation*}
e_{n k}=t a_{n-2, k}+s a_{n-1, k}+r a_{n k}, \tag{34}
\end{equation*}
$$

for all $n, k \in \mathbb{N}$ and λ be any given sequence space. Then, $A \in(\lambda: \operatorname{tr} f)$ if and only if $E \in(\lambda: r f)$.

Proof. Let us suppose that $x=\left(x_{k}\right) \in \lambda$ and satisfy the following equality for all $n \in \mathbb{N}$:

$$
\begin{aligned}
\{B(r, s, t)(A x)\}_{n} & =t(A x)_{n-2}+s(A x)_{n-1}+r(A x)_{n} \\
& =t \sum_{k} a_{n-2, k} x_{k}+s \sum_{k} a_{n-1, k} x_{k}+r \sum_{k} a_{n k} x_{k} \\
& =\sum_{k}\left(t a_{n-2, k}+s a_{n-1, k}+r a_{n k}\right) x_{k} \\
& =(E x)_{n} .
\end{aligned}
$$

From here, we can obtain that $A x \in \operatorname{trf}$ if and only if $E x \in r f$. In this way, we complete the proof.

In this section, we characterize the matrix classes $\left(\operatorname{trf}: \ell_{\infty}\right),(\operatorname{trf}: c),\left(\ell_{\infty}: \operatorname{trf}\right)$ and $(c: \operatorname{trf})$ as in the following corollary:

Corollary 2. The following statements hold:

1. $A=\left(a_{n k}\right) \in\left(\operatorname{trf}: \ell_{\infty}\right)$ if and only if $\left\{a_{n k}\right\}_{k \in N} \in\{\operatorname{trf}\}^{\beta}$ for all $n \in \mathbb{N}$ and

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|\frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}\right|<\infty . \tag{35}
\end{equation*}
$$

2. $A=\left(a_{n k}\right) \in(\operatorname{trf}: c)$ if and only if $\left\{a_{n k}\right\}_{k \in N} \in\{t r f\}^{\beta}$ for all $n \in \mathbb{N}$, (5) and following conditions hold:

$$
\begin{gather*}
\lim _{n} \frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}=\alpha_{j} \text { for each fixed } k \in \mathbb{N}, \tag{36}\\
\lim _{n} \sum_{k} \frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}=\alpha, \tag{37}\\
\lim _{n} \sum_{k}\left|\Delta\left(\frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}-\alpha_{j}\right)\right|=0, \tag{38}
\end{gather*}
$$

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|\Delta\left(\frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}\right)\right|<\infty \tag{39}
\end{equation*}
$$

3. $A=\left(a_{n k}\right) \in\left(\ell_{\infty}: \operatorname{trf}\right)$ if and only if (5) and following statements hold:

$$
\begin{gather*}
r f-\lim _{n}\left(\frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}\right)=\alpha_{j}, \tag{40}\\
\lim _{m} \sum_{k}\left|\frac{1}{R_{m}} \sum_{i=0}^{m} r_{i} a_{n+i, k}-\alpha_{k}\right|=0, \text { uni. in } n . \tag{41}
\end{gather*}
$$

4. $A=\left(a_{n k}\right) \in(c: \operatorname{trf})$ if and only if (24), (29) and following statement hold:

$$
\begin{equation*}
r f-\lim _{k}\left(\frac{1}{r} \sum_{j=k}^{\infty} \sum_{m=0}^{j-k}\left(\frac{-s+\sqrt{s^{2}-4 t r}}{2 r}\right)^{j-k-m}\left(\frac{-s-\sqrt{s^{2}-4 t r}}{2 r}\right)^{m} a_{n j}\right)=\alpha . \tag{42}
\end{equation*}
$$

References

[1]. B. Altay and F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336 (1) (2007) 632-645.
[2]. F. Başar, Matrix transformations between certain sequence spaces of Xp and lp, Soochow J. Math. 26 (2) (2000) 191-204.
[3]. F. Başar and R. Çolak, Almost-conversative matrix transformations, Turkish J. Math. 13 (3) (1989) 91-100.
[4]. D. Butkovic, H. Kraljevic, N. Sarapa, On the almost convergence, Functional Analysis II, Proceedings, Dubrovnik 1985, Lecture Notes in Math. Springer Verlag, 1242 (1987), 396-417.
[5]. G. G. Lorentz, A contribution to the theory of divergent series, Acta Math., 80 (1948), 167-190.
[6]. G. G. Lorentz and K. Zeller, Summation of sequences and summation of series, Proc. Camb. Phil. Soc. 71 (1972) 67-73.
[7]. G. M. Petersen, Regular matrix transformations, McGraw-Hill Publishing Company Limited, London, (1966).
[8]. Z. Zararsız, On the almost convergence, Doctoral Thesis, Nevşehir, (2015).
[9]. Z. Zararsız, On the extensions of the almost convergence idea and core theorems, The Journal of Nonlinear Science and Applications, 9 (2016), 112-125.

