

Anti-Hausdorff I-Spaces

Swapan Kumar Das

Professor of Mathematics, University of Development Alternative (UODA), House No.- 80, Satmajid Road, Dhanmondi, Dhaka-1209, Bangladesh

Email:swapanuoda@yahoo.com (corresponding author), +8801721830880

Subrata Majumdar

Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh Email:smajumdar2015@yahoo.com

Nasima Akhter

Professor of Mathematics, University of Rajshahi, Rajshahi, Bangladesh Email:nasima.math.ru@gmail.com

Abstract

This is the second paper on I-spaces. Here anti-Hausdorffness has been introduced for I-spaces and many topological theorems related to anti-Hausdorffness have been generalized to I-spaces, as an extension of study of infratopological spaces.

Keywords: I-space, Trivial anti-Hausdorff I-space, Non-trivial anti-Hausdorff I-space, I-Continuous image, Quotient I-space, Irreducible spaces, Infratopological spaces.

1. Introduction

In a previous paper [1] we have introduced I-spaces and studied some of their properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in ([2], [3], [4], [5]) in less general form. These spaces were called infratopological spaces. Anti-Hausdorff topological spaces and anti-Hausdorff U-spaces were introduced and studied in [6] and [7] respectively. In this paper the concept of anti-Hausdorff I-spaces have been introduced and a few important properties of such spaces have been studied. A number of interesting examples have been constructed to prove non-trivialness of such results.

2. Anti-Hausdorff I-Spaces

We have generalized some results on anti-Hausdorff topological spaces in [6] to I-spaces. We recall that an I- space X is a non-empty set X together with a collection \mathcal{F} of subsets of X such that (i) \mathcal{F} is closed under finite intersections, and (ii) X and Φ belong to \mathcal{F} .

Definition 2.1. An I- space X with $|X| \ge 2$ is said to be anti-Hausdorff, if for no pair of distinct points x, y in X, there exist I- open sets G and H such that $x \in G$, $y \in H$, $G \cap H = \Phi$, i.e., if no pair of distinct points can be separated by disjoint I-open sets. Here, |X| denotes the number of elements of X. An anti-Hausdorff I-space which is not a topological space—and hence, not a U-space will be called a non-trivial anti-Hausdorff I-space. Otherwise it is called trivial. It is easily seen that anti-Hausdorff I-spaces with 1 or 2 elements are trivial spaces.

Definition 2.2. If (X, \mathcal{I}) is an I-space and $\Phi \neq A \subseteq X$, then $\mathcal{I}_A = \{A \cap G \mid G \in \mathcal{I}\}$ is an I-structure in

A. For, $\bigcap_{\alpha} (A \cap G_{\alpha}) = A \cap \left(\bigcap_{\alpha} G_{\alpha}\right)$ and $\bigcap_{\alpha} G_{\alpha} \in \mathcal{F}$. Thus (A, \mathcal{F}_A) is an I-space, and is called an I-subspace of (X, \mathcal{F}) .

Example 2.1. Let $X = \{a, b, c, d\}$, $\mathcal{J} = \{X, \Phi, \{a\}, \{a, b\}, \{a, c\}, \{a, c, d\}\}$. Then (X, \mathcal{J}) is non-trivial anti- Hausdorff I- space.

Example 2.2. Let $X = \{a, b, c, d, e\}$ and $\mathcal{L} = \{X, \Phi, \{b\}, \{a, b\}, \{b, d\}\}, \{b, d\}\}$

 $\mathcal{J}_2 = \{X, \Phi, \{b\}, \{b, c\}, \{a, b, d\}\}\$. Then (X, \mathcal{J}_1) and (X, \mathcal{J}_2) are non-trivial anti-Hausdorff I- spaces.

Example 2.3. Let $X = \mathbb{N}$, $\mathcal{J} = \{X, \Phi, 2\mathbb{N}, 5\mathbb{N}\}$. Then (X, \mathcal{J}) is a non-trivial anti- Hausdorff space.

We introduce the concept of irreducibility as in [6], [7] and [8].

Definition 2.3. An I-space X is said to be irreducible if every pair of non-empty I-open sets in X intersect.

Thus an I-space X is irreducible if, for every pair of non-empty I-open sets V, W in X, $V \cap W \neq \Phi$.

We now prove a theorem which corresponds to Theorem of 4.2 of [6] & Theorem 2.5 of [7].

Theorem 2.1. Let X be an I-space. The following statements are equivalent:

- (i) X is anti-Hausdorff,
- (ii) X is irreducible,
- (iii) The union of two distinct non- empty I-open sets in X is connected,

(iv) Every non- empty I-open set in X is dense in X,

Proof: We first prove (i) \Leftrightarrow (ii).

To prove (i) \Rightarrow (ii) let X be an anti- Hausdorff. If possible suppose that X is not irreducible. Then there exist non-empty I-open sets V and W in X such that $V \cap W = \Phi$. Since V and W are non-empty, there exist $x \in V$ and $y \in W$. Since $V \cap W = \Phi$, $x \neq y$. X being anti-Hausdorff, this is a contradiction. Therefore X is irreducible.

We now prove (ii) \Rightarrow (i). Let X be irreducible. If possible, let X be not anti-Hausdorff.

Then there exist x, y \in X with x \neq y and I-open sets V and W in X with V \cap W = Φ and x \in V, y \in W. Since V and W are non-empty, this is a contradiction to the fact that X is irreducible.

Hence X is anti-Hausdorff.

To prove (ii) \Rightarrow (iii), Suppose X is irreducible and also suppose (iii) does not hold. Then there exists non-empty distinct I-open sets V_1 and V_2 in X, such that $V_1 \cup V_2 = V(say)$ is disconnected. Then $V_1 \cup V_2 = V_3 \cup V_4$, for some non-empty I-open sets such that $V_3 \cap V_4 = \Phi$. This contradicts (ii) and hence to our hypothesis. Hence the union of distinct non-empty two I-open set in X is connected.

To prove (iii) \Rightarrow (ii), Suppose (iii) holds. If possible, let X be not irreducible. Then there exists non-empty I-open sets V_1 , V_2 in X such that $V_1 \cap V_2 = \Phi$. Then $V_1 \cup V_2$ is disconnected. This contradicts (iii). Hence X is irreducible.

We now prove (ii) \Leftrightarrow (iv). Let X be a irreducible. Let V be a non- empty I-open set in X and let x \in X. Let W be an I-open set in X such that $x \in$ W. Then $W \neq \Phi$. Since X is irreducible,

$$V \cap W \neq \Phi$$
. So, $x \in \overline{V}$. Thus $X = \overline{V}$, i.e., V is dense in X. Thus (ii) \Rightarrow (iv).

Conversely, suppose that every non-empty I-open set in X is dense in X. Let V and W be two non-empty I-open sets in X and let $x \in V$. Since $\overline{W} = X$ and V is a neighborhood of x, $V \cap W \neq \Phi$. So X is irreducible.

Therefore (iv) \Rightarrow (ii).

The proof of the theorem is thus complete.

Theorem 2.2. Every I-continuous image of an anti- Hausdorff I-space is an anti-Hausdorff I-space.

Proof: Let X, Y be two I-spaces where X is anti-Hausdorff I-space. Let f be a I-continuous map of X onto Y. Let y_1 and y_2 be two distinct points of Y, and let H_1 and H_2 be two I-open sets in Y such that $y_1 \in H_1$, $y_2 \in H_2$. Since f is onto there exist x_1 , x_2 in X such that $f(x_1) = y_1$, $f(x_2) = y_2$.

Let $G_1 = f^{-1}(H_1)$, $G_2 = f^{-1}(H_2)$. Since f is I-continuous, both G_1 and G_2 are I-open sets. Since X is

anti-Hausdorff I-space, $G_1 \cap G_2 \neq \Phi$. Let $x \in G_1 \cap G_2$, then $f(x) \in H_1 \cap H_2$. Thus $H_1 \cap H_2 \neq \Phi$. So, Y is anti-Hausdorff I-space.

Definition 2.4. Let (X, \mathcal{F}) be an I-space and R an equivalence relation on X. The equivalence class for each $x \in X$ is denoted by \overline{x} . We define an I-structure $\overline{\mathcal{F}}$ on the collection of equivalence classes $\frac{X}{R}$ of X with respect to R as follows. Any subset \overline{V} of $\frac{X}{R}$ will be a member of $\overline{\mathcal{F}}$ iff $\{x \in X | \overline{x} \in \overline{V}\} \in \mathcal{F}$, i.e., for every I-open set V, the collection of equivalence classes of the elements is I-open in $\frac{X}{R}$, and these are the only I-open members of $\frac{X}{R}$. That $\overline{\mathcal{F}}$ is an I-structure is obvious. This I-structure $\overline{\mathcal{F}}$ is called the identification I-structure or the quotient I-structure on X, and $(\frac{X}{R}, \overline{\mathcal{F}})$ is called the identification I-space or the quotient I-space of X with respect to R.

Example 2.4. Let $X = \mathbb{R}$, $\mathcal{J} = \{\mathbb{R}, \Phi\} \cup \{(\text{n.i, n.(i+1)}) \mid n \in \mathbb{Z}, i = 0,1,2,\dots,9\} \cup \{(\text{n.j, n.(j+2)}) \mid n \in \mathbb{Z}, j = 0,1,2,\dots,8\}$ (Here decimal representation has been used.). Then (X, \mathcal{J}) is a non-trivial anti-Hausdorff I-space.

Let ρ be the relation on \mathbb{R} given by $x \rho y$, iff $x - y \in \mathbb{Z}$. Then ρ is an equivalence relation on \mathbb{R} , and for each $x \in \mathbb{R}$, $\overline{x} = x + \mathbb{Z}$, the coset of \mathbb{Z} in \mathbb{R} , both \mathbb{Z} and \mathbb{R} , being regarded as additive groups. The quotient I-structure $\overline{\mathcal{F}}$ on $\frac{\mathbb{R}}{\rho}$ is given by

$$\overline{\mathcal{I}} = \left\{ \frac{\overline{\mathbb{R}}}{\rho}, \Phi \right\} \cup \left\{ \left(m.i, m.(i+1) \right) + Z \middle| m \in Z \right\} \cup \left\{ \left(n.j, n.(j+2) \right) + Z \middle| n \in Z \right\},$$

where for integers m and n, $(m.i, m.(i + 1)) + Z = \{((m + r).i, (m + r).(i + 1)) \mid r \in Z\}$, and $(n.j, n.(j + 2)) + Z = \{((n + s).j, (n + s). (j + 2)) \mid s \in Z\}$.

Hence $\frac{\mathbb{R}}{\rho}$ is a non-trivial anti-Hausdorff I-space.

Corollary 2.1. If X is an anti-Hausdorff I-space and R is an equivalence relation on X, then the quotient I-space $\frac{X}{R}$ is anti-Hausdorff I-space.

Proof: It follows from the definition of quotient I-space that the map $f: X \to \frac{X}{R}$ given by $f(x) = \operatorname{cls} x$ is continuous and onto. The corollary is then follows from Theorem 2.2.

Theorem 2.3. A U-subspace of a non-trivial anti-Hausdorff I-space need not be U-anti-Hausdorff.

Proof: Let us consider the I-space (X, \mathcal{I}) , where $X = \{a, b, c, d\}$ and $\mathcal{I} = \{X, \Phi, \{a, b\}, \{a, c\}, \{a, c, d\}, \{a\}\}$. Then (X, \mathcal{I}) is a non-trivial anti-Hausdorff I-space, since there is no pair of disjoint non-empty I-open sets in X. Now let $Y = \{b, c, d\}$. Then as a subspace of X, Y has the I- structure, $\mathcal{I} = \{Y, \Phi, \{b\}, \{c\}, \{c, d\}\}$. Obviously, Y is not anti- Hausdorff I-space.

Theorem 2.4. If A and B two non-trivial anti-Hausdorff I-subspaces of an I-space X, then the subspace $A \cap B$ need not be non-trivial anti-Hausdorff I-space.

Proof: Let
$$X = \{a, b, c, d, e, f\}$$
, $\mathcal{J} = \{X, \Phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{b, c, d, e, f\}\}$.

Clearly (X, \mathcal{J}) is a non- trivial I-space. Let $A = \{a, c, d, f\}$ and $B = \{a, b, d, f\}$. Then A and B are I-subspaces of X with $\mathcal{J}_A = \{A, \Phi, \{c\}, \{a, c\}, \{c, d\}, \{c, d, f\}\}, \mathcal{J}_B = \{B, \Phi, \{b\}, \{a, b\}, \{b, d\}, \{b, d, f\}\}$. Clearly both A and B are non- trivial anti- Hausdorff I- subspaces of X. Now $A \cap B = \{a, d, f\}$ and $\mathcal{J}_A \cap B = \{A \cap B, \Phi, \{a\}, \{d\}, \{d, f\}\}$. Then $A \cap B$ is a non-trivial I-space which is not anti-Hausdorff.

The following provides another example which proves the truth of theorem 2.4.

Example 2.5. Let $X = \{a, b, c, d, e, f\}$, $\mathscr{J} = \{X, \Phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{b, c, d, e, f\}\}$. Clearly (X, \mathscr{J}) is a non-trivial I- space. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, f\}$. Then A and B are I- subspaces of X with $\mathscr{J}_A = \{A, \Phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{b, c, d, e\}\}$, $\mathscr{J}_B = \{B, \Phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{b, c, d, f\}\}$. Clearly both A and B are non-trivial anti- Hausdorff I- subspaces of X. Now $A \cap B = \{a, b, c, d\}$ and $\mathscr{J}_{A \cap B} = \{A \cap B, \Phi, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. Then $A \cap B$ is a trivial anti-Hausdorff I-space. Thus $A \cap B$ is not a non-trivial anti- Hausdorff I-space.

In the situation of Theorem-2.4, it is also possible that $A \cap B$ is a non-trivial anti-Hausdorff I-space as is shown by the following example.

Example 2.6. Let $X = \{a, b, c, d, e, f, g\}$, $\mathcal{J} = \{X, \Phi, \{a, b, c, d\}, \{b, c, d, f\}, \{b, c, d\}, \{d, e, f, g\}, \{d\}, \{d, f\}\}$. Clearly (X, \mathcal{J}) is a non-trivial I- space. Let $A = \{a, b, c, d, e\}$ and $B = \{a, b, c, d, e, f\}$. Then A and B are I- subspaces of X with $\mathcal{J}_A = \{A, \Phi, \{a, b, c, d\}, \{b, c, d\}, \{d, e\}, \{d\}\}, \mathcal{J}_B = \{B, \Phi, \{a, b, c, d\}, \{b, c, d\}, \{b, c, d\}, \{d, e, f\}, \{d\}, \{d, f\}\}$. Clearly both A and B are non-trivial anti- Hausdorff I-subspaces of X. Now $A \cap B = \{a, b, c, d, e\}$ and $\mathcal{J}_{A \cap B} = \{A \cap B, \Phi, \{a, b, c, d\}, \{b, c, d\}, \{d, e\}, \{d\}\}$. Then $A \cap B$ is a non-trivial anti-Hausdorff I-space.

Remark 2.1. If A and B are two non-trivial subspaces of a non-trivial I-space X, then the subspace A \cap B may be non-trivial anti-Hausdorff I-space even if neither A nor B is so.

Let $X = \mathbb{R}$, $\mathcal{J} = \{ \mathbb{R}, \Phi, \{(a,b) | a,b \in \mathbb{R}, a < b \} \}$. Clearly (X, \mathcal{J}) is a non-trivial I-space.

Let $A = (2,5) \cup \mathbb{Q}^c$ and $B = (\sqrt{7}, \sqrt{29}) \cup \mathbb{Q}$, where $\mathbb{Q}^c = \mathbb{R} - \mathbb{Q}$. Then the I-structure \mathscr{I}_A and \mathscr{I}_B on A and B respectively are $\mathscr{I}_A = \{A, \Phi\} \cup \{(a,b) | a,b \in \mathbb{R}, 2 \le a < b \le 5\} \cup \{(c,d) \cap \mathbb{Q}^c | c,d \in \mathbb{R}\}$.

Since $(3,4) \cap (5,6) \cap \mathbb{Q}^c = \Phi$. (A, \mathcal{I}_A) is not anti- Hausdorff I- subspace.

 $\mathcal{J}_B = \{B, \Phi \} \cup \{(a,b) | a,b \in \mathbb{R}, \sqrt{7} < a < b < \sqrt{29} \} \cup \{(c,d) \cap \mathbb{Q} | c,d \in \mathbb{R} \}$. Since $(\sqrt{7}, \sqrt{29}) \cap (6,7) \cap \mathbb{Q} = \Phi$. (B, \mathcal{J}_B) is not anti-Hausdorff I-subspace. Thus both A and B are non-trivial subspaces of an I-space X, neither of which is anti-Hausdorff.

A \cap B = $(\sqrt{7},5) \cup ((2,5) \cap \mathbb{Q}) \cup ((\sqrt{7},\sqrt{29}) \cap \mathbb{Q}^c)$ and $\mathcal{G}_{A \cap B} = \{A \cap B, \Phi\} \cup \{(\sqrt{7},5) \cap (a,b) \mid a,b \in \mathbb{R}, a < b\} \cup \{(2,5) \cap \mathbb{Q}) \cap (a,b) \mid a,b \in \mathbb{R}, a < b\} \cup \{(\sqrt{7},\sqrt{29}) \cap \mathbb{Q}^c \cap (a,b) \mid a,b \in \mathbb{R}, a < b\}$

Thus $A \cap B$ is a non-trivial anti- Hausdorff I-space.

As in Theorem 2.9 of [6] and Theorem 2.3 of [7], we have

Theorem 2.5. Let A_1 and A_2 be two anti-Hausdorff I-spaces with I-structures \mathscr{I}_1 and \mathscr{I}_2 respectively. Then $(A_1 \cup A_2, \ \langle \ \mathscr{I}_1 \cup \mathscr{I}_2 \ \rangle)$ need not be anti-Hausdorff I-space. Here $\langle \ \mathscr{I}_1 \cup \mathscr{I}_2 \ \rangle$ is the I-structure generated by $\mathscr{I}_1 \cup \mathscr{I}_2$ in $A_1 \cup A_2$.

Proof: Let $A_1 = \{a, c, d, e\}$ $\mathcal{J}_1 = \{A_1, \Phi, \{a, d\}, \{a, e\}, \{a\}\}, \text{ and } A_2 = \{a, c, d, f\}$ $\mathcal{J}_2 = \{A_2, \Phi, \{c, d\}, \{c, f\}, \{c\}\}.$ Then (A_1, \mathcal{J}_1) and (A_2, \mathcal{J}_2) are non-trivial anti-Hausdorff I-spaces.

Then $A = A_1 \cup A_2 = \{a, c, d, e, f\}$. Let \mathcal{F} be the I-structure on A generated by $\mathcal{F}_1 \cup \mathcal{F}_2$, i.e., $\mathcal{F} = \{A, A_1, A_2, \Phi, \{a\}, \{c\}, \{d\}, \{c, d\}, \{c, f\}, \{a, d\}, \{a, e\}\}\}$. So, in (X, \mathcal{F}) , $a \in \{a\}$, $d \in \{d\}$ with $\{a\}, \{d\} \in \mathcal{F}$ and $\{a\} \cap \{d\} = \Phi$.

Hence (X, \mathcal{I}) is not an anti- Hausdorff I-space.

However, we also have

Theorem 2.6. If A and B are two non-trivial anti-Hausdorff I-subspaces of an I- space X, then $A \cup B$ may be non-trivial anti-Hausdorff.

Proof: Let $X = \{a, b, c, d, e, f, g\}$, $\mathcal{J} = \{X, \Phi, \{a, b, c\}, \{b, c, e, f\}, \{b, c\}, \{a, b\}, \{a, b, d\}, \{b\}\}$. Clearly (X, \mathcal{J}) is a non-trivial anti-Hausdorff I- space. Let $A = \{a, b, d, e, f\}$, $B = \{b, c, d, g\}$. Then A and B are I- subspaces of X with $\mathcal{J}_A = \{A, \Phi, \{a, b\}, \{a, b, d\}, \{b, e, f\}, \{b\}\}$, $\mathcal{J}_B = \{B, \Phi, \{b, c\}, \{b\}, \{b, d\}\}$. Clearly, both A and B are non-trivial anti-Hausdorff I-subspaces of X. Now $A \cup B = \{a, b, c, d, e, f, g\}$ and $\mathcal{J}_A \cup_B = \{A \cup B, \Phi, \{a, b, c\}, \{b, c, e, f\}, \{b, c\}, \{a, b\}, \{a, b, d\}, \{b\}\}$. Hence, $A \cup B = X$ too, is a non-trivial anti-Hausdorff I-space.

The following theorems prove the truth of the various possibilities for $A \cup B$, where A, B are I-subspaces of X.

Theorem 2.7. If A is a non-trivial anti-Hausdorff I-subspace and B is a non-trivial non anti-Hausdorff I-subspace of X, then $A \cup B$ may be a non-trivial anti-Hausdorff I- subspace of X.

Proof: Let $X = \{a, b, c, d, e, f, g\}$, $\mathcal{J} = \{X, \Phi, \{a, b, c\}, \{b, c, e, f\}, \{b, c\}, \{a, b\}, \{a, b, d\}, \{b\}\}$. Clearly (X, \mathcal{J}) is a non-trivial anti-Hausdorff I-space. Let $A = \{a, b, d, e, f\}$, $B = \{a, d, e, f\}$. Then A and B are I-subspaces of X with $\mathcal{J}_A = \{A, \Phi, \{a, b\}, \{a, b, d\}, \{b, e, f\}, \{b\}\}$, $\mathcal{J}_B = \{B, \Phi, \{a\}, \{e, f\}, \{a, d\}\}$. Thus A is a non-trivial anti- Hausdorff I-subspace and B is non-trivial non anti-Hausdorff I-subspace of I-space X. Now $A \cup B = \{a, b, d, e, f\}$ and $\mathcal{J}_A \cup_B = \{A \cup B, \Phi, \{a, b, d\}, \{b, f\}, \{b\}\}$.

Here $A \cup B$ is a non-trivial anti-Hausdorff I-subspace of X.

The following example also proves the truth of Theorem 2.7

Example 2.7. Let $X = \mathbb{R}$, $\mathcal{J} = \{\mathbb{R}, \Phi, (1,5), [2,3), (1,2], [2,4], \{2\}\}$. Thus X is a non-trivial anti-Hausdorff I-space. Let A = (1, 4], $\mathcal{J}_A = \{A, \Phi, [2,3), (1,2], [2,4], \{2\}\}$. A is a non-trivial anti-Hausdorff I- subspace of I-space X. Let $B = [1, 2] \cup [3,6]$, $\mathcal{J}_B = \{B, \Phi, (1,2], [3,5), \{2\}, [3,4]\}$. Hence B is a non-trivial non anti-Hausdorff I- subspace of X. Now $A \cup B = [1, 6]$, $\mathcal{J}_A \cup_B = \{A \cup B, \Phi, (1,5), [2,3), (1,2], [2,4], \{2\}\}$.

Thus $A \cup B$ is a non-trivial anti-Hausdorff I-subspace of X.

Theorem 2.8. If A and B are non-trivial non anti-Hausdorff I-subspaces of an I- space X, then $A \cup B$ may be a non-trivial non anti-Hausdorff I-subspace of X.

Proof: Let $X = \{a, b, c, d, e, f, g\}$, $\mathcal{F} = \{X, \Phi, \{a, b, c\}, \{b, c, e, f\}, \{b, c\}, \{a, b\}, \{a, b, d\}, \{b\}\}$. Clearly, (X, \mathcal{F}) is a non-trivial anti-Hausdorff I-space. Let $A = \{a, d, e, f\}$, $B = \{c, d, f\}$. Then A and B are I- subspaces of X with $\mathcal{F}_A = \{A, \Phi, \{a\}, \{e, f\}, \{a, d\}\}, \mathcal{F}_B = \{B, \Phi, \{c\}, \{c, f\}, \{d\}\}$. Clearly, A and B are non-trivial non anti-Hausdorff I-subspace of I-space X. Now $A \cup B = \{a, c, d, e, f\}$ and $\mathcal{F}_A \cup B = \{A, G, \{c, e, f\}, \{c\}, \{a\}, \{a, d\}\}$. Here $A \cup B$ is a non-trivial non anti-Hausdorff I-subspace of X.

Theorem 2.9. If A and B are non-trivial non anti-Hausdorff I-subspace of an I-space X, then $A \cup B$

may be a non-trivial anti-Hausdorff I-subspace of X.

The following example proves the truth of the theorem.

Proof: Let $X = \mathbb{R}$, $\mathscr{J} = \{\mathbb{R}, \Phi, [2,4], [3,5], [3,4] \cup [7,10]\}$. Then X is a non-trivial anti-Hausdorff I-space. Let $A = ([2,3] \cap \mathbb{Q}^c) \cup ([3,4] \cap \mathbb{Q}) \cup ([4,5] \cap \mathbb{Q}^c) \cup [7,10]$. Then $\mathscr{J}_A = \{A, \Phi, ([2,3] \cap \mathbb{Q}^c), ([3,4] \cap \mathbb{Q}), ([4,5] \cap \mathbb{Q}^c)\}$. A is non-trivial non-anti-Hausdorff I-subspace of an I-space X. Let $B = ([2,3) \cap \mathbb{Q}) \cup ([3,4] \cap \mathbb{Q}^c) \cup ((4,5] \cap \mathbb{Q})$, $\mathscr{J}_B = \{B, \Phi, ([2,3) \cap \mathbb{Q}), ([3,4] \cap \mathbb{Q}^c), ((4,5] \cap \mathbb{Q})\}$. B is non-trivial non-anti-Hausdorff I-subspace of an I-space X.

Now $A \cup B = [2, 3) \cup [3,4] \cup (4,5] \cup [7,10] = [2,5] \cup [7,10]$. Therefore $\mathcal{G}_A \cup_B = \{A \cup B, \Phi, [2,4], [3,5], [3,4]\}$.

Thus $A \cup B$ is a non-trivial anti-Hausdorff I-subspace of X.

Theorem 2.10. If A is a non-trivial anti-Hausdorff I-subspace and B is non-trivial non anti-Hausdorff subspace of an I-space X, then $A \cup B$ may be a non-trivial non anti- Hausdorff I-subspace of X.

Proof: Let $X = \mathbb{R}$, $\mathscr{J} = \{ \mathbb{R}, \Phi, (1,5), [2,3), (1,2], [2,4], (-3, -2), (-4, -3), \{2\} \}$. Then X is non-trivial non anti-Hausdorff I-space. Let A = [1,4), then $\mathscr{J}_A = \{A, \Phi, (1,4), [2,3), (1,2], [2,4], \{2\} \}$. A is non-trivial anti-Hausdorff I-subspace of an I-space X.

Let B = (-4, -1), $\mathcal{J}_B = \{B, \Phi, (-3, -2), (-4, -3)\}$. B is non-trivial non anti-Hausdorff I-subspace of an I-space X.

Now $A \cup B = \{[1, 4) \cup (-4, -1)\}, \mathcal{J}_A \cup_B = \{A \cup B, \Phi, (1, 4), [2, 3), (1, 2], [2, 4), \{2\}, (-3, -2), (-4, -3)\}.$

Here $A \cup B$ is a non-trivial non anti-Hausdorff I-subspace of X.

Theorem 2.11. If A and B two non-trivial anti-Hausdorff I-subspaces of a I-space X, then $A \cup B$ may be a non-trivial non anti-Hausdorff I-subspace of X.

Proof: Let $X = \mathbb{R}$, $\mathcal{J} = \{\mathbb{R}, \Phi, [1,5), [2,3), (1,2], [2,4], \{2\}, [-3, -2], [-2, -1), \{-2\}, \}$. Then X is non-trivial not anti-Hausdorff I- space. Let A = [1,3), then $\mathcal{J}_A = \{A, \Phi, [2,3), (1,2], \{2\}\}$. A is non-trivial anti-Hausdorff I-subspace of an I-space X.

Let B = [-4, -1], $\mathcal{J}_B = \{B, \Phi, [-3, -2], [-2, -1), \{-2\}\}$. B is non-trivial anti-Hausdorff I-subspace of an I-space X.

Now $A \cup B = \{[1, 3) \cup [-4, -1]\}, \mathcal{J}_A \cup_B = \{A \cup B, \Phi, [1, 3), [2, 3), (1, 2], \{2\}, [-3, -2], [-2, -1), \{-2\}\}.$ Here $A \cup B$ is a non-trivial non anti-Hausdorff I-subspace of X.

References

- [1]. Das S. K., Akhter N. and Majumdar S (2014), Generalizations of topological spaces, Bulletin of Mathematics and Statistics research, Vol.2, Issue.4., 439-446.
- [2]. Andrijevic D. (1996), On b-open sets, Mat. Vesnik, 48, 59-64.
- [3]. Devi R., S. Sampathkumar and M. Caldas (2008), On supra open sets and S-continuous functions, General Mathematics, Vol. 16, Nr. 2, 77-84.
- [4]. A. S. Mashhour A. S., et al., (1983), On supratopological spaces, Indian J. pure appl, Math, 14 (4), 502-510
- [5]. Sayed O.R. and Noiri T. (2000), On supra b- open sets and supra b-continuity on topological spaces, European Journal of pure and applied Mathematics, Vol. 3, No. 2, 295-302.
- [6]. Majumdar S.and Mitra M, (31 December, 2012), Anti- Hausdorff spaces, Journal of Physical Sciences Vol.16, 117-123. ISSN: 0972 - 8791.
- [7]. Majumdar S, Akhter N and Das S. K. (2014), Anti-Hausdorff U-spaces, Bulletin of Mathematics and Statistics research, Vol.2, Issue.4., 425- 428.
- [8]. Macdonald, I. G., Algebraic Geometry, W.A. Benjamin. Inc., New York, 1968.