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Abstract 

This paper presents the design, the prototype implementation and the preliminary evaluation of an 

enhanced meta-computing environment based on the FEniCS Project and focused on multi-domain 

multi-physics problems modeled with partial differential equations. It is based on scripting languages 

and their practices, and on the Service Oriented Architecture paradigm and the associated web services 

technologies. Our design is generic, covering a wide range of problems but our proof of concept 

implementation is restricted to elliptic PDEs in two or three dimensions. 
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1. Introduction 

Advances in hardware and software technologies in the 1980s led to the modern era of scientific 

modeling and simulation. This era seems to come to an end. The simulation needs in both industry and 

academia mismatch with the existing software platforms and practices, which to a great extent have 

remained unchanged for the past several decades. We foresee that this mismatch, together with the 

emerging ICT advances and the cultural changes in scientific approaches will lead to a new generation of 

modeling and simulation. 

This paper proposes approaches for designing, analyzing, implementing and evaluating new 

simulation frameworks particularly suited to multi-domain and multi-physics (MDMP) problems that have 

Partial Differential Equations (PDEs) in their foundations. These types of problems appear frequently on 

real world problems. Considering also their heavy computational needs it seems reasonable to make them 
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more accessible to the programmer while reducing their execution time using every available 

device/machine on a system/network. 

We focus on designing a software platform that facilitates the numerical solution of PDEs associated 

with MDMP mathematical models. In particular, we propose an enhanced meta-computing environment 

which is based on: (a) scripting languages (Python) and their practices and (b) on the Service Oriented 

Architecture (SOA) paradigm and the associated web services technologies. 

Although our design is generic, covering a wide range of problems, our proof of concept 

implementation is restricted to elliptic PDEs in two or three dimensions. Furthermore, we show that our 

approach can easily exploit state of the art meta-computing methodologies (Schwartz splitting, hybrid 

stochastic deterministic methods, ...), numerical solvers (finite element modules from deal.II, 

interpolants, ...) and modern computer architectures. Specifically, it clearly shows that our tool can easily 

exploit state of the art numerical solvers including those available in FEniCS [6] and deal.II [2], domain 

decomposition methods with or without overlapping [5] [12] Monte Carlo based hybrid solvers [10], 

rectangular or curvilinear domains and interfaces and beyond. 

2. Meta-Computing Algorithms for MDMP Problems 

Traditional linear PDE solvers follow a simple workflow. We first discretize the problem (domain and 

derivatives), and then solve the resulting linear algebraic problem. Unfortunately, this approach is not best 

suited for MDMP problems since it leads to monolithic PDE solvers that treat the MDMP problem as a 

coherent all that does not exploit the “multi” nature of the problem. For such problems, these solvers are 

expensive to develop, difficult to maintain and reuse. Their mapping to multi-processing machines is rather 

challenging. 

Meta computing algorithms provide an attractive alternative. They allow us to exploit the problem 

characteristics and view its solution process as a workflow that involves individual, relatively simpler PDE 

solvers that are associated with the multi nature of the problem and can be fine tuned and easily mapped 

through high level parallelism. 

2.1 Hybrid, Deterministic-Stochastic Methods 

The Monte Carlo method has the capability to provide approximate solutions to a variety of mathematical 

problems, not necessarily with probabilistic content or structure, by performing statistical sampling experiments. 

About a century has been passed since the discovery of methods which based on the Monte Carlo concept 
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provide numerical approximations to PDE problems. These methods generate random numbers and by 

observing certain of their characteristics and behavior are capable of calculating approximations to PDE 

solutions. 

It has been proposed (see [10] and references within) that the above stochastic solver can be combined 

with traditional PDE solvers to develop a hybrid solver that enjoy several very desirable characteristics in many 

respects. 

Given the overall domain Ω with boundary Ω, the associated PDE and a particular domain of interest D 

⊂ Ω with boundary Г = D\Ω, the main steps of a hybrid stochastic/deterministic solver are: 

Stochastic pre-processing: Monte Carlo-based walks on spheres inside Ω to compute an approximation 

of the solution at selected points on D. 

Interpolation: Interpolation procedures which using the computed in the previous step solutions on 

particular points on D constructs the interpolant of the solution on D which acts as a boundary conditions for 

the local PDE sub-problems. 

Deterministic solving: Solves each one of the independent local PDE subproblems generated by the 

above decoupling of the original PDE problem. Selected a local conventional solver for each resulting 

sub-problems that is of our interest and compute the solution. 

Our prototype implementation concentrates on the Poisson equation, narrowed on the unit square or unit 

cube for 2D and 3D problems respectively. It utilizes high, quality state of the art software components that 

include finite solvers from the deal.II [2] library for the deterministic solving step, 2D and 3D interpolants, plot 

and visualization modules etc.. 

2.2 Domain Decomposition Methods 

The classical Schwarz alternating procedure demonstrates the basic mathematical idea of overlapping 

domain decomposition methods. These methods [5], are efficient, flexible and best suited for MDMP problems. 

Several of these methods are inherently suitable for parallel computing the solution of PDEs. They all offer a 

reasonable alternative since they are based on a physical decomposition of a global MDMP problem. The 

global solution is then sought by solving the smaller subdomain problems collaboratively and then combining 

their individual solutions. 

Let us consider an example consisting of the domain Ω = Ω1∪Ω2 with perhaps different elliptic operators 

on each subdomain. i is the internal boundary of subdomain Ωi, i = 1, 2. 

Schwarz methods are realized through the following iterative procedure for finding the approximate 
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solution in the entire composite domain Ω. Let 𝑢𝑢𝑖𝑖𝑛𝑛  denote the approximate solution in subdomain Ωi, and fi 

denote the restriction of f to Ωi. Starting with an initial guess 𝑢𝑢0, we iterate for n = 1, 2, ... to find successive 

approximate solutions 𝑢𝑢𝑘𝑘 , k = 1, 2, .... Assuming, without loss of generality in our approach, that the original 

MDMP problem consists of the Poison equation in Ω with homogeneous Dirichlet conditions on Ω we iterate 

between the two sub-problems as follows: 

  
−𝛻𝛻2𝑢𝑢1

𝑛𝑛=𝑓𝑓1  in   𝛺𝛺1                −𝛻𝛻2𝑢𝑢2
𝑛𝑛=𝑓𝑓2  in   𝛺𝛺2

𝑢𝑢1
𝑛𝑛=𝑔𝑔  on   𝜗𝜗𝜗𝜗1\Г1,                𝑢𝑢2

𝑛𝑛=𝑔𝑔  on   𝜗𝜗𝜗𝜗2\Г2,
𝑢𝑢1
𝑛𝑛=𝑢𝑢2

𝑛𝑛−1� Г1  on   Г1,                𝑢𝑢2
𝑛𝑛=𝑢𝑢1

𝑛𝑛 � Г2  on   Г2

      (1) 

Within each iteration, the two problems continuously update the internal Dirichlet conditions on Г1 and Г2. 

Note that the classical alternating Schwartz methods usually have limited parallelism. There exist variants of 

these methods (eg additive Schwarz methods) that inherently promote parallel computing and although their 

rate of convergence is lower, the associated iteration scheme is inherently parallel. 

Interface relaxation methods [12] are essentially non-overlapping domain decomposition methods that 

follow the iterative structure of the Schwartz method but in a more complicate manner. Besides that, in our 

meta-computing implementation framework these methods can be treated in a completely similar manner that 

due to space limitation will not be presented here. 

3 FEniCS Extensions for MDMP PDE Problems 

The FEniCS project [6] is an open-source collection and integration of software tools specialized on 

automated, high quality and high performance solution of differential equations. 

The main user interface of FEniCS is Dolfin [7], a C++ and Python library. It provides a problem 

solving environment for models based on PDEs. It implements core parts of the functionality of FEniCS, 

including data structures and algorithms for computational meshes and finite element assembly. It also 

wraps the functionality of other FEniCS components and external software, and is responsible for the 

correct communication between them. 

FEniCS targets user-friendly notation and support for rapid development. It supports weak 

formulations for the representation of PDEs through the Unified Form Language (UFL) [1]. UFL is 

integrated with Dolphin and defines a flexible user interface for defining finite element spaces and 

expressions for weak forms in a notation close to mathematical notation. It can handle complicated 

equations efficiently. Differentiation of expressions and forms are also integrated in the language. 

The main goal of our extensions is to design and implement an open, enhanced meta-computing 

environment supporting MDMP problems, without changing the back-end of FEniCS (problem assembly, 
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linear algebra solvers etc.). Our platform utilizes and extends the Python user interface of Dolfin, as 

Python syntax is closer to UFL, being at the same time fitter for rapid prototyping. Support for 

multi-domain multi-physics (MDMP) problems is implemented on top  of the existing functionality, 

either as new Python modules using the available data structures and classes, or as external dynamically 

shared C++ libraries, wrapped as Python modules using SWIG [3]. 

3.1 Extensions for MDMP PDE Problems with Overlapping Domains 

We implement the additive Schwarz method and use it as a high level solver for MDMP problems 

with overlapping domains. The geometry, interfaces, discretization, boundary values and equations 

applicable on each subdomain are described using UFL and Dolphin in a separate file per subdomain. This 

organization treats different subdomains as distinct programming units, facilitating the parallel or 

distributed solution of the problem on different subdomains. This is particularly helpful in case web 

services are used, as discussed in Section 4. All datatypes used are either pure Python or FEniCS objects. 

There is no dependence from third party software libraries at this level. 

Each subdomain object must override a number of methods implicitly called before each invocation 

of the solver. 

init() This method holds the UFL [1] definition of the subdomain and sets as class attributes the 

subdomain’s function space, linear and bi-linear form of the PDE. 

neighbors() It provides information to the solver about the other subdomains this subdomain overlaps 

with, in order for the solver to automatically update the interface values after each iteration. 

boundaries() It informs the solver about the fixed external boundaries of the subdomain. 

The entry point of the iterative solver is the solve() method. It takes as arguments an object with the 

configuration of the solving environment (max iterations, tolerance, etc) and a Python list of user defined 

problem objects. 

After each iteration, for each subdomain solution, the algorithm checks a set of termination criteria 

evaluating convergence or whether a maximum number of iterations has been reached. 
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Fig. 1. A sample 3D problem with two overlapping subdomains 

As an example, assume a 3D problem with two subdomains: a sphere and a box that overlap as 

shown in figure 1(a). Figures 1(c) and 1(d) depict the solution using the iterative Schwarz solver, whereas 

figure 1(b) depicts the convergence rate for the two subdomains until reaching the user-specified accuracy. 

Listing 1.1 outlines the definition of the box subdomain (box3D 1.py) on top of a common skeleton 

file. The definition of the sphere subdomain (sphere3D 1.py) is similar. Listing 1.2 shows the code that, 

given the subdomain definitions, drives the iterative solver. The user-required changes on the skeleton and 

driver are in bold. The subdomains can be – and are in the example – configured with different meshes, 

discretizations and PDEs. Note also that using a remote solver would be completely straightforward, by 

substituting line 7 with the commented-out lines 5-6. 
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3.2 Hybrid, Deterministic-Stochastic Method Extensions 

We introduce extensions to FEniCS to support hybrid deterministic-stochastic methods. More 

specifically, a stochastic step is used to evaluate values at interfaces, whereas default FEniCS support can 

be used for interpolation and solving. 

This design decouples the stochastic interface estimation from the actual solving and allows it to be 

implemented on any device (including CPUs, GPUs or even FPGAs) in order to take advantage of the vast 

parallelism inherently available in Monte-Carlo methods. Our implementation includes a POSIX threads 

version for CPUs, as well as an OpenCL [11] version for any OpenCL-capable device (including CPUs 

and GPUs). 
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The functionality is available in Dolphin in the form of an MC class, offering the MC::montecarlo() 

method. The latter takes a description of the interface as input and outputs estimations for the values on 

the interface. Both 2D and 3D problems are supported. 

The montecarlo() method takes the same arguments with the DirichletBC class of FEniCS, plus a 

description of the original domain and the subdomain of interest. Using the DirichletBC methods we 

obtain the points on the interface and call the new montecarlo() method for them. The call returns the 

estimated values of all interface points (nodes) assigned to a new DirichletBC object. The latter can then 

be used anywhere in the rest of the program. 

Listing 1.3 outlines an example of using the stochastic support introduced in FEniCS to solve a PDE 

in an internal, rectangular subdomain of the original domain, by stochastically estimating the values at the 

interface of the internal subdomain. Once again, changes introduced by our extensions are highlighted in 

bold. 

 

The client object at line 29 above encapsulates the local/remote functionality of the method. We 

discuss more about web services and client objects in chapter 4. 

Figure 2 depicts the solution provided by the hybrid stochastic/deterministic Monte Carlo-based 

solver for the sample problem of listing 1.3, as well as the absolute error with respect to a fully 

deterministic solver for a set of 16 experiments. 
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Fig. 2. Hybrid solution and error estimation with respect to a deterministic solver for the sample problem 

4 Web Services Layer 

The scientific community has embraced the Web, enabling researchers as well as practitioners to 

closely collaborate and share resources. This resulted primarily in the publication of information while the 

availability of computational services has been rather limited and to a great extend monolithic, mostly in 

the form of e-science platforms that are expensive to build and difficult to reuse outside their scope and 

environment. 

We envision a radically new way of deploying, publishing, sharing, discovering and re-using 

Scientific Computing resources in every day practice. For that we argue the necessity of an open, balanced 

and ever-evolving ecosystem of web services that: 

- relieves consumers from the pain of selecting/installing/running the most appropriate 

algorithm/software/machine components for their scientific computing needs. 

- allows producers to offer their scientific computing components in an easy to be 

discovered/packaged/consumed way. 

- enables computing facilities to accommodate a wide range of consumers and producers in an open, 

dynamic, and value adding manner. 

- advances the science of scientific computing towards problem solving with the optimum available 

algorithm/implementation/machine combination 

In our study we explore the idea of having the ability to develop, order and consume MDMP related 

computational modules in a transparent and abstract way within our above described platform and through 

the Web. For this we enhance our platform with a web service layer utilizing the following XML based 

 



On PDE Problem Solving Environments for Multidomain Multiphysics Problems 120 

standards. For detailed information about Web services in general and the above standards in particular 

please see [9]. 

SOAP: (Simple Object Access Protocol) for exchanging structured information within web 

services in computer networks. It relies on other application layer protocols, such as HTTP for 

message negotiation and transmission. 

WSDL: (Web Services Description Language) used for describing the functionality a web 

service offers, how it can be called, what parameters it expects, and what data structures it returns. 

ebXML: (e-business XML) that allows web service providers to publish their services and 

consumers to query for service availability and description. 

The overall scenario for developing a MDMP solver under the SOA paradigm is the following. We 

first wrap up any of the software modules mentioned above (or any other related legacy code) as a web 

service and publish it on our ebXML directory utilizing any of the available IDEs or platforms. This may 

be accomplished through one of the several available Integrated Developing Environments (IDE) or 

platforms. In particular we have implemented the above task in several different ways, using WSO2, .Net, 

Eclipse, or Spyne (see details given below) in a systematic manner that makes wrapping and deployment a 

more or less routine procedure with no particular challenges. Next, any developer or even any software 

agent could query to ebXML for particular services, receive the list of available ones, select the most 

appropriate and bind to it automatically through its WSDL file even at run-time. 

For particular wrapper’s implementations we have selected Spyne [8] one out of the many existing 

Python frameworks and briefly describe our main steps below. Listing 1.4 shows a simple server function 

definition that wraps the Monte Carlo method. The deployment of the server code in listing 1.4 can be 

done as shown in listing 1.7. The RemoteClient class (see below) utilizes Suds [4], a lightweight 

SOAP-based web service client for Python which reads WSDL files at runtime. Upon creation, it parses 

the WSDL and derives from it a representation which is used to provide the user with a service description 

for message/reply processing. 

In order to have a consistent API between local and remote methods, apart from the RemoteClient 

class, the platform also defines a LocalClient class, as shown below, with the same API methods. In the 

case of the RemoteClient, the input data are sent to the remote server which in turn responds with the 

output data. Listing 1.5 shows the base definition of the RemoteClient and LocalClient classes. Any 

underlying implementation differences are transparent to the user who in both cases receives the result the 
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conventional local function call way, as shown in listing 1.6. 

5 Conclusion 

We design a meta-computing platform to target MDMP problems, modeled with PDEs, based on (but 

not limited to) the FEniCS project. The platform’s environment provides a high level scripting API in 

Python, that utilizes the FEniCS UFL domain specific language. 

Our environment allows domain experts to focus on expressing the models than delving into 

implementation details, programmers to effectively select the most appropriate available software module 

for a particular component (subdomain) of the problem with respect to its associated single physics model 

and users to efficiently deploy and run MDMP computations on loosely coupled distributed and 

heterogeneous compute engines. 

We also show how to integrate remote functionality from machines over the web in a consistent and 

transparent way to the end user, following widely accepted standards. Our generic design allows us to 

exploit state of the art software libraries and explore new solving approaches for MDMP problems. It 

essentially allow us to replace our traditional software library based viewpoint with the SOA based one 

that aggressively promotes meta-computing and software reuse at large. 
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