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Abstract 

In this paper, we are going to develop the notion of groups with fuzzy operations (F-groups). An 

F-group is a set equipped with a fuzzy equality and a binary fuzzy operation. In the rest, we investigate 

the notions of fuzzy subgroup, fuzzy normal subgroup and isomorphism theorems in F-groups setting. 
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Introduction  

The problem of development of algebras with fuzzy operations is formulated in ([1], P: 136). Fuzzy 

approaches to various universal algebraic concepts started with Rosenfeld’s fuzzy groups [10]. Since then, 

many fuzzy algebraic structures have been studied (vector spaces, rings, etc.). Also, some authors 

proposed a general approach to the theory of fuzzy algebras. Another fuzzy approach to universal algebras 

was initiated by Belohlvek and Vychodil [1,2], who studied the so-called algebras with fuzzy equalities 

and developed fuzzy equational logic. These structures have two parts: the functional part, which is an 

ordinary algebra and the relational part, which is the carrier set of the algebra, equipped with a fuzzy 

equality which is compatible with all of the fundamental operations of the ordering algebra. In the fuzzy 

set theory there were many different approaches to the concept of a fuzzy function. In a number of papers 

various kinds of fuzzy functions based on fuzzy equivalence relations were studied. In particular, such 

approach was used in definitions of partial fuzzy functions and fuzzy functions, given by Klawonn [9], 

strong fuzzy functions and perfect fuzzy functions, given by Demirci [5,6]. Fuzzy functions based on 

fuzzy equivalence relations have shown oneself to be very useful in many applications in approximate 
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reasoning, fuzzy control, vague algebra and other fields. The content of this paper can be briefly stated as 

follows: In the present section, we introduce the necessary information concerned with the fuzzy operation 

and algebras with fuzzy operations, and in the next section, we define F- groups by fuzzy operations. In 

the rest of this paper, we define F- congruences on F-groups, F- quotient groups by F- congruences and 

isomorphism theorems with their properties. 

In this paper we will use complete residuated lattices 𝑳𝑳 =< 𝐿𝐿,∧,∨,⊗,→ ,0,1 > as the structures of 

truth values. Residuated lattices were introduced by Ward and Dilworth in ring theory. Complete 

residuated lattices as a structures of truth values were introduced into the context of fuzzy sets and fuzzy 

logic by Goguen [3]. 

A complete residuated lattice is an algebra 𝑳𝑳 =< 𝐿𝐿,∧,∨,⊗,→ ,0,1 > where 

(i) < 𝐿𝐿,∧,∨ ,0,1 > is a complete lattice with the least element 0 and the greatest element 1, 

(ii) < 𝐿𝐿,⨂,1 > is a commutative monoid, i.e. ⊗ is associative, commutative, and 𝑎𝑎⨂1 = 𝑎𝑎 for each 

𝑎𝑎 ∈ 𝐿𝐿, 

(iii) ⨂, and → satisfy adjointness, i.e.  𝑎𝑎⨂𝑏𝑏 ≤ 𝑐𝑐  iff 𝑎𝑎 ≤ 𝑏𝑏 → 𝑐𝑐 for each 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐿𝐿 (≤ denotes the 

lattice ordering). 

The operations ⨂ (called multiplication) and →  (residuum) are intended for modeling the 

conjunction and implication of the corresponding logical calculus, while supremum (∨) and infimum (∧) 

are intended for modeling of the existential (∃) and universal (∀) quantifer. 

An L-set of 𝑋𝑋 (or fuzzy set with truth degrees in L) is a mapping 𝜇𝜇:𝑋𝑋 → 𝐿𝐿. An n-ary L-relation of  

𝑋𝑋 is a mapping  𝜇𝜇:𝑋𝑋𝑛𝑛 → 𝐿𝐿. 

Definition 1.1. [1] A fuzzy equivalence relation 𝐸𝐸  on a set 𝑋𝑋  is a mapping 𝐸𝐸:𝑋𝑋 × 𝑋𝑋 → 𝐿𝐿 

satisfying  

(i) 𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 1 (Reflexivity); 

(ii) 𝐸𝐸(𝑥𝑥, 𝑦𝑦) = 𝐸𝐸(𝑦𝑦, 𝑥𝑥) (Symmetry); 

(iii)𝐸𝐸(𝑥𝑥, 𝑦𝑦) ⊗ E(y, z) ≤ 𝐸𝐸(𝑥𝑥, 𝑧𝑧) (Transitivity), 

for every 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. A fuzzy equivalence 𝐸𝐸 on 𝑋𝑋 where E(x, y)=1 implies 𝑥𝑥 = 𝑦𝑦 will be called a 

fuzzy equality. Fuzzy equalities will usually be denoted by ≈. 

Theorem 1.2. [1] Each complete residuated lattice satisfies 

 𝑎𝑎 ⊗⋁ 𝑏𝑏𝑖𝑖 = ⋁ (𝑎𝑎 ⊗ 𝑏𝑏𝑖𝑖),𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼  (1) 

 𝑎𝑎1 ≤ 𝑎𝑎2  and 𝑏𝑏1 ≤ 𝑏𝑏2 implies 𝑎𝑎1 ⊗𝑎𝑎2 ≤ 𝑏𝑏1 ⊗𝑏𝑏2. (2) 
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Theorem 1.3. Let ≈𝑴𝑴 be a fuzzy equality on M. Let (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 )=⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖). 

Then ≈𝑀𝑀𝑛𝑛  is a fuzzy equality on 𝑀𝑀𝑛𝑛 . 

Proof. Reflexivity: (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 )=⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑎𝑎𝑖𝑖) = 1. 

Symmetry: 

 (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) =⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖) =⊗𝑖𝑖=1

𝑛𝑛 (𝑏𝑏𝑖𝑖 ≈𝑀𝑀 𝑎𝑎𝑖𝑖) =  (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛). 

Transitivity: Using (2) we have 

(𝑎𝑎1, … , 𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛)⨂(𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) = 

= [⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖)]⨂[⊗𝑖𝑖=1

𝑛𝑛 (𝑏𝑏𝑖𝑖 ≈𝑀𝑀 𝑐𝑐𝑖𝑖)] = 

=⊗𝑖𝑖=1
𝑛𝑛 �(𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖)⨂(𝑏𝑏𝑖𝑖 ≈𝑀𝑀 𝑐𝑐𝑖𝑖)� ≤ 

≤⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑐𝑐𝑖𝑖) = (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛). 

If (𝑎𝑎1, … ,𝑎𝑎𝑛𝑛) ≈𝑀𝑀𝑛𝑛 (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) = 1  then ⊗𝑖𝑖=1
𝑛𝑛 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖) = 1, hence 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖  for all 𝑖𝑖 ∈

{1,2, … ,𝑛𝑛} 

Definition 1.4. Let ≈𝑴𝑴 be a fuzzy equality on M. A fuzzy relation 𝑟𝑟:𝑀𝑀𝑛𝑛 × 𝑀𝑀 → 𝐿𝐿 is called an 

n-ary fuzzy operation w.r.t. ≈𝑴𝑴 if we have the following conditions 

Extensionality: 

⊗𝑖𝑖=1
𝑛𝑛+1 (𝑎𝑎𝑖𝑖 ≈𝑀𝑀 𝑏𝑏𝑖𝑖) ⊗𝑟𝑟(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛+1) ≤ 𝑟𝑟(𝑏𝑏1, … , 𝑏𝑏𝑛𝑛+1), ∀𝑎𝑎𝑖𝑖 ,  ∀𝑏𝑏𝑖𝑖 ∈ 𝑀𝑀, 𝑖𝑖 ∈ {1, . . ,𝑛𝑛 + 1}, 

Functionality:  

𝑟𝑟(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ,𝑦𝑦) ⊗ 𝑟𝑟(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ,𝑦𝑦′) ≤ (𝑦𝑦 ≈𝑀𝑀 𝑦𝑦′), ∀𝑎𝑎𝑖𝑖 ,∀𝑦𝑦,  ∀𝑦𝑦′ ∈ 𝑀𝑀, 𝑖𝑖 ∈ {1, … ,𝑛𝑛}, 

Fully defined: ⋁ 𝑟𝑟(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ,𝑦𝑦) = 1𝑦𝑦∈𝑀𝑀 ,∀𝑎𝑎1, … ,∀𝑎𝑎𝑛𝑛 ∈ 𝑀𝑀. 

From Extensionality, it is simply proved that  

 (𝑥𝑥𝑖𝑖 ≈𝑀𝑀 𝑦𝑦𝑖𝑖) ⊗ 𝑟𝑟(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 , . . , 𝑥𝑥𝑛𝑛+1) ≤ 𝑟𝑟(𝑥𝑥1, … ,𝑦𝑦𝑖𝑖 , . . , 𝑥𝑥𝑛𝑛+1). (3) 

Throughout this paper, we will use the above inequality. 

Definition 1.5. [4] Let 𝜏𝜏 =<≈,𝑅𝑅 > be a type where ≈∉ 𝑅𝑅  and each 𝑟𝑟 ∈ 𝑅𝑅 is called a relation 

symbol, ≈ is a binary relation symbol called a symbol for fuzzy equality. Then an algebra with fuzzy 

operations is a triplet 𝑴𝑴 =< 𝑀𝑀,≈𝑴𝑴,𝑅𝑅𝑴𝑴 > such that  

  

To simply, we call F-algebra instead of an algebra with fuzzy operations. 

In [6] a strong fuzzy function is introduced by Demirci, but we develop this notion to algebras. An 

F-algebra 𝑴𝑴 =< 𝑀𝑀,≈𝑴𝑴,𝑅𝑅𝑴𝑴 > is called a strong F-algebra if for every 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 𝑀𝑀,∃ 𝑦𝑦 ∈ 𝑀𝑀 such 

(i) is a fuzzy equality on the set ,
(ii)  is a set of fuzzy operations on the set .

M
R M
≈M

M

 



Groups with Fuzzy Operations (F-groups) 157 

that 𝑟𝑟𝑀𝑀(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ,𝑦𝑦) = 1, where 𝑟𝑟𝑀𝑀 ∈ 𝑅𝑅𝑀𝑀 is an arbitrary n-ary fuzzy operation on M. 

Results and Discusion 

Definition 2.1. Let 𝑮𝑮 =< 𝐺𝐺,≈𝑮𝑮,∗𝑮𝑮> be an F-algebra of type 𝜏𝜏 =<≈,∗>, where ∗𝐆𝐆 is a binary 

fuzzy operation on 𝐺𝐺. Then  

(i) ∗𝑮𝑮 is a fuzzy abelian iff ∗𝑮𝑮 satisfies 

(∀𝑎𝑎,∀𝑏𝑏,∀𝑐𝑐,∀𝑐𝑐′ ∈ 𝐺𝐺) [(∗𝑮𝑮 (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) ⊗∗𝑮𝑮 (𝑏𝑏,𝑎𝑎, 𝑐𝑐′)) ≤ �𝑐𝑐 ≈𝑮𝑮 𝑐𝑐′�]. 

(ii) ∗𝑮𝑮 is a fuzzy associative iff ∗𝑮𝑮 satisfies 

�(∗𝑮𝑮 (𝑏𝑏, 𝑐𝑐,𝑑𝑑) ⊗∗𝑮𝑮 (𝑎𝑎,𝑑𝑑,𝑚𝑚) ⊗∗𝑮𝑮 (𝑎𝑎, 𝑏𝑏, 𝑞𝑞) ⊗∗𝑮𝑮 (𝑞𝑞, 𝑐𝑐,𝑤𝑤)) ≤ �𝑚𝑚 ≈𝑮𝑮 𝑤𝑤�� 

for all 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑,𝑚𝑚, 𝑞𝑞,𝑤𝑤 ∈ 𝐺𝐺. 

Definition 2.2. Let 𝑮𝑮 =< 𝐺𝐺,≈𝑮𝑮,∗𝑮𝑮>  be a strong F-algebra of type  𝜏𝜏 =<≈,∗>.  Then 𝑮𝑮 =<

𝐺𝐺,≈𝑮𝑮,∗𝑮𝑮> is an F-group if ∗𝑮𝑮 is fuzzy associative and we have the following conditions 

(i) There exists an (two sided) identity element 𝑒𝑒 ∈ 𝐺𝐺 such that 

∗𝑮𝑮 (𝑎𝑎, 𝑒𝑒, 𝑎𝑎) =∗𝑮𝑮 (𝑒𝑒,𝑎𝑎,𝑎𝑎) = 1 for each 𝑎𝑎 ∈ 𝐺𝐺. 

(ii) For a given identity element 𝑒𝑒 ∈ 𝐺𝐺, and for a given 𝑎𝑎 ∈ 𝐺𝐺, there exists an element  

𝑎𝑎−1 ∈ 𝐺𝐺 such that ∗𝐺𝐺 (𝑎𝑎−1,𝑎𝑎, 𝑒𝑒) =∗𝐺𝐺 (𝑎𝑎,𝑎𝑎−1, 𝑒𝑒) = 1. 

To simply, we denote  the F-group 𝑮𝑮 =< 𝐺𝐺,≈𝑮𝑮,∗𝑮𝑮> by 𝑮𝑮 =< 𝐺𝐺,≈,∗>.  

Example 2.3. Let ℤ3 =< {[0], [1], [2]}, +> be the group with the integers (mod 3) with addition.  

Then  ℤ′3 =< {[0], [1], [2]},≈′ , +′ > with the following fuzzy equality ≈ ′ on ℤ3   

x ≈′ y = �1,         if  x = y,
0,         if  x ≠ y,� ,      ∀𝑥𝑥,𝑦𝑦 ∈ ℤ3, 

and with the fuzzy operation +′(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (𝑥𝑥 + 𝑦𝑦) ≈ ′𝑧𝑧 on ℤ3 is an F-group. 

Theorem 2.4. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗>  be an F-group. Then  

(i) The identity element 𝑒𝑒 is an unique element. 

(ii) For every  𝑎𝑎 ∈ 𝐺𝐺, 𝑎𝑎−1 ∈ 𝐺𝐺 is an unique inverse element. 

Proof. (i): Let 𝑒𝑒 and 𝑒𝑒′ be two identity elements of 𝐺𝐺. Using the condition (ii) of Definition 2.2 

and the functionality of *, we have  

1 =∗ (𝑒𝑒, 𝑒𝑒′, 𝑒𝑒) ⊗∗ (𝑒𝑒, 𝑒𝑒′, 𝑒𝑒′) ≤ (𝑒𝑒 ≈ 𝑒𝑒′), i.e. e ≈ e′ = 1. Sine ≈ is a fuzzy equality thus, 𝑒𝑒 = 𝑒𝑒′. 

(ii): Let a ∈ G has two inverse elements  𝑏𝑏 and 𝑏𝑏′ . By the associativity of * and the conditions (i), 

(ii) for F-groups, we have  

1 =∗ (𝑎𝑎, 𝑏𝑏′𝑒𝑒)⊗∗ (𝑏𝑏, 𝑒𝑒, 𝑏𝑏) ⊗∗ (𝑏𝑏,𝑎𝑎, 𝑒𝑒) ⊗∗ (𝑒𝑒, 𝑏𝑏′, 𝑏𝑏′) ≤ (𝑏𝑏 ≈ 𝑏𝑏′), i.e. 𝑏𝑏 ≈ 𝑏𝑏′ = 1,  hence 𝑏𝑏 = 𝑏𝑏′ .  
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In [8], vague groups and the cancellation law for vague groups are introduced by Demrci, Since 

F-groups are similar to the vague groups, thus we introduce the cancellation law for F-groups. 

Theorem 2.5. [8]. (Cancellation Law) Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> be an F-group. Then 

(i) ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) ⊗∗ (𝑎𝑎, 𝑏𝑏′ , 𝑐𝑐) ≤ (𝑏𝑏 ≈ 𝑏𝑏′),  

(ii)  ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) ⊗∗ (𝑎𝑎′, 𝑏𝑏, 𝑐𝑐) ≤ (𝑎𝑎 ≈ 𝑎𝑎′), 

for every 𝑎𝑎, 𝑏𝑏, 𝑏𝑏′, 𝑐𝑐 ∈ 𝐺𝐺. 

Theorem 2.6. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> be an F-group and 𝑒𝑒 the identity element of 𝐺𝐺. 

Then  

(i) ∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒) ≤ (𝑏𝑏 ≈ 𝑎𝑎−1),  

(ii) ∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒) ≤ (𝑎𝑎 ≈ 𝑏𝑏−1),  

(iii) ∗ (𝑐𝑐, 𝑐𝑐, 𝑐𝑐) ≤ (𝑐𝑐 ≈ 𝑒𝑒),   

where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐺𝐺, and 𝑎𝑎−1,𝑏𝑏−1 are the inverses of 𝑎𝑎, 𝑏𝑏, respectively. 

Proof. (i): By the cancellation law we have  

∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒) =∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒) ⊗ 1 =∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒)⊗∗ (𝑎𝑎,𝑎𝑎−1, 𝑒𝑒) ≤ (𝑏𝑏 ≈ 𝑎𝑎−1). 

(ii) is similarly proved.  

(iii) By the cancellation law we may write 

∗ (𝑐𝑐, 𝑐𝑐, 𝑐𝑐) = 1 ⊗∗ (𝑐𝑐, 𝑐𝑐, 𝑐𝑐) =∗ (𝑐𝑐, 𝑒𝑒, 𝑐𝑐) ⊗∗ (𝑐𝑐, 𝑐𝑐, 𝑐𝑐) ≤ (𝑐𝑐 ≈ 𝑒𝑒), for every 𝑐𝑐 ∈ 𝐺𝐺. 

In the rest, we define and investigate the notions of subgroup, congruence, and morphism on 

F-groups. In [3], a fuzzy subalgebra in an ordinary algebra 𝑴𝑴 =< 𝑀𝑀,𝐹𝐹𝑴𝑴 > is introduced by an L-set 𝐴𝐴 

in 𝑀𝑀 such that for each n-ary operation 𝑓𝑓𝑴𝑴 ∈ 𝐹𝐹𝑴𝑴 we have 𝐴𝐴(𝑎𝑎1), … ,𝐴𝐴(𝑎𝑎𝑛𝑛) ≤ 𝐴𝐴(𝑓𝑓𝑴𝑴(𝑎𝑎1, … ,𝑎𝑎𝑛𝑛)) for 

every 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∈ 𝑀𝑀. 

Definition 2.7. Let 𝑮𝑮  be any F-group. By a fuzzy subgroup 𝜇𝜇 of 𝑮𝑮  is defined as a function 

𝜇𝜇:𝐺𝐺 → 𝐿𝐿  such that  

𝜇𝜇(𝑎𝑎) ⊗𝜇𝜇(𝑏𝑏) ≤ ⋁ (𝜇𝜇(𝑐𝑐) ⊗∗ (𝑎𝑎, 𝑏𝑏−1, 𝑐𝑐))𝑐𝑐∈𝐺𝐺  

for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺. Moreover a fuzzy normal subgroup 𝜇𝜇 of 𝑮𝑮 is defined as a fuzzy subgroup satisfying 

the condition 

⋁ �𝜇𝜇(𝑐𝑐) ⊗∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)� ≤ ⋁ �𝜇𝜇(𝑐𝑐′) ⊗∗ (𝑏𝑏,𝑎𝑎, 𝑐𝑐′)�𝑐𝑐′ ∈𝐺𝐺𝑐𝑐∈𝐺𝐺   

for every 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺.  

In the following, we get into the concept of morphisms for F-groups. 

Definition 2.8. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> and 𝑮𝑮′ =< 𝐺𝐺′ ,≈′ ,∗′> be two F-groups. A mapping 𝑓𝑓:𝐺𝐺 → 𝐺𝐺′ is 
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called a morphism of 𝐺𝐺  to  𝐺𝐺′ if 

(i) 𝑎𝑎 ≈ 𝑏𝑏 ≤ 𝑓𝑓(𝑎𝑎) ≈′ 𝑓𝑓(𝑏𝑏)  ∀𝑎𝑎,∀𝑏𝑏 ∈ 𝐺𝐺, 

(ii) ∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ≤∗′ (𝑓𝑓(𝑎𝑎1),𝑓𝑓(𝑎𝑎2),𝑓𝑓(𝑎𝑎3)),∀𝑎𝑎1, ∀𝑎𝑎2,  ∀𝑎𝑎3 ∈ 𝐺𝐺. 

The fact that 𝑓𝑓:𝐺𝐺 → 𝐺𝐺′ is a morphism is denoted by 𝑓𝑓:𝑮𝑮 → 𝑮𝑮′. Furthermore, 

(a) a morphism such that  

(𝑎𝑎 ≈ 𝑏𝑏) = �𝑓𝑓(𝑎𝑎) ≈′ 𝑓𝑓(𝑏𝑏)� ∀𝑎𝑎,∀𝑏𝑏 ∈ 𝐺𝐺 

and 

∗ (a1, a2, a3) =∗ ′�𝑓𝑓(a1), f(a2), f(a3)�, 

is called an embedding, for every 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 ∈ 𝐺𝐺. 

(b) a surjective morphism is called an epimorphism, 

(c) an injective morphism is called a monomorphism, 

(d) an epimorphism which is an embedding is called an isomorphism. 

(e) an epimorphism with the condition (𝑎𝑎 ≈ 𝑏𝑏) = �𝑓𝑓(𝑎𝑎) ≈′ 𝑓𝑓(𝑏𝑏)� is called a weak isomorphism, 

where 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺.  

Theorem 2.9. Let  𝑮𝑮 =< 𝐺𝐺,≈,∗> and 𝑮𝑮′ =< 𝐺𝐺′,≈ ′,∗ ′ > be two F-groups and 𝑓𝑓:𝑮𝑮 → 𝑮𝑮′ be a 

morphism. Then 

(i) 𝑓𝑓(𝑒𝑒) = 𝑒𝑒′ where 𝑒𝑒 and 𝑒𝑒′ are the identity elements of 𝐺𝐺 and 𝐺𝐺′ respectively. 

(ii) 𝑓𝑓(𝑏𝑏−1) = �𝑓𝑓(𝑏𝑏)�−1 ,  where 𝑏𝑏−1 is the inverse element of any 𝑏𝑏 ∈ 𝐺𝐺. 

(iii) 𝑓𝑓(𝑏𝑏) ≈′ 𝑒𝑒′ ≤ �𝑓𝑓(𝑏𝑏)�−1 ≈′ 𝑒𝑒′ , ∀𝑏𝑏 ∈ 𝐺𝐺. 

Proof. To prove (i), from the cancellation law for F-groups and 1 = (𝑒𝑒, 𝑒𝑒, 𝑒𝑒) ≤∗′ �𝑓𝑓(𝑒𝑒),𝑓𝑓(𝑒𝑒),𝑓𝑓(𝑒𝑒)�, 

thus 1 =∗′ �f(e), f(e), f(e)�, we have 

1 = 1 ⊗ 1 =∗′ �𝑓𝑓(𝑒𝑒), 𝑒𝑒′ ,𝑓𝑓(𝑒𝑒)�⊗∗′ �𝑓𝑓(𝑒𝑒),𝑓𝑓(𝑒𝑒),𝑓𝑓(𝑒𝑒)� ≤ �𝑒𝑒′ ≈′ 𝑓𝑓(𝑒𝑒)�.  This implies that 

e′ ≈′ f(e) = 1, i.e. e′ = f(e). 

(ii): By the condition (ii) of F-groups we have 1 =∗ (𝑏𝑏, 𝑏𝑏−1, 𝑒𝑒) ≤∗ ′�𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑏𝑏−1),𝑓𝑓(𝑒𝑒)�, thus  

∗ ′�𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑏𝑏−1),𝑓𝑓(𝑒𝑒)� = 1. So, using the cancellation law it is proved that 

1 = 1 ⊗ 1 =∗′ �𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑏𝑏−1),𝑓𝑓(𝑒𝑒)� ⊗∗′ �𝑓𝑓(𝑏𝑏), �𝑓𝑓(𝑏𝑏)�−1, 𝑒𝑒′� = 

 =∗′ (f(b), f(b−1), e′) ⊗∗′ �f(b), �f(b)�−1, e′� ≤ f(b−1) ≈′  �f(b)�−1,  

therefore 𝑓𝑓(𝑏𝑏−1) ≈′  �𝑓𝑓(𝑏𝑏)�−1 = 1. This means that 𝑓𝑓(𝑏𝑏−1) =  �𝑓𝑓(𝑏𝑏)�−1. 
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(iii): Using the cancellation law, the condition (ii) of F-groups, and (3), we have 

𝑓𝑓(𝑏𝑏) ≈′ 𝑒𝑒′ = (𝑓𝑓(𝑏𝑏) ≈′ 𝑒𝑒′) ⊗  1 = (𝑓𝑓(𝑏𝑏) ≈′ 𝑒𝑒′) ⊗∗′ �𝑓𝑓(𝑏𝑏), �𝑓𝑓(𝑏𝑏)�−1, 𝑒𝑒′� ≤∗′ �𝑒𝑒′, �𝑓𝑓(𝑏𝑏)�−1, 𝑒𝑒′�

=∗′ �𝑒𝑒′, �𝑓𝑓(𝑏𝑏)�−1, 𝑒𝑒′�⊗ 1 =∗′ �𝑒𝑒′, �𝑓𝑓(𝑏𝑏)�−1, 𝑒𝑒′�⊗∗′ (𝑒𝑒′, 𝑒𝑒′, 𝑒𝑒′) ≤ (�𝑓𝑓(𝑏𝑏)�−1 ≈′ 𝑒𝑒′). 

Definition 2.10. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> and 𝑮𝑮′ =< 𝐺𝐺′,≈ ′,∗ ′ > be two F-groups and 𝑓𝑓:𝑮𝑮 → 𝑮𝑮′ be a 

morphism. For any fuzzy subgroup 𝜇𝜇 of 𝑮𝑮′ we define a map 𝑓𝑓−1(𝜇𝜇) from 𝐺𝐺 to 𝐿𝐿 by 

𝑓𝑓−1(𝜇𝜇)(𝑥𝑥) = 𝜇𝜇(𝑓𝑓(𝑥𝑥)) 

for all 𝑥𝑥 ∈ 𝐺𝐺, we call a preimage of fuzzy subgroup 𝜇𝜇 under 𝑓𝑓. For any subgroup 𝜇𝜇 of 𝑮𝑮 we define 

an image 𝑓𝑓[𝜇𝜇] of 𝜇𝜇 under 𝑓𝑓 by from 𝐺𝐺′ to 𝐿𝐿 by 𝑓𝑓[𝜇𝜇](𝑦𝑦) =∨𝑢𝑢∈𝑓𝑓−1(𝑦𝑦) 𝜇𝜇(𝑢𝑢) for all 𝑦𝑦 ∈ 𝐺𝐺′ .   

Theorem 2.11. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> and 𝑮𝑮′ =< 𝐺𝐺′,≈ ′,∗ ′ > be two F-groups, 𝑓𝑓:𝑮𝑮 → 𝑮𝑮′  be an 

embedding. Let 𝜇𝜇′ be a fuzzy (normal) subgroup of 𝑮𝑮′, then the preimage 𝑓𝑓−1(𝜇𝜇′) is a fuzzy (normal) 

subgroup of 𝑮𝑮. 

Proof. First, we show that 𝑓𝑓−1(𝜇𝜇′) is a fuzzy subgroup of 𝑮𝑮. Due to the definition of subgroups for 

F-groups and since 𝑓𝑓 is an embedding, then we have  

𝑓𝑓−1(𝜇𝜇′)(𝑎𝑎) ⊗  𝑓𝑓−1(𝜇𝜇′)(𝑏𝑏) = 𝜇𝜇′(𝑓𝑓(𝑎𝑎)) ⊗𝜇𝜇′(𝑓𝑓(𝑏𝑏)) ≤

⋁ (𝜇𝜇′�𝑐𝑐 ′�⊗∗′ (𝑓𝑓(𝑎𝑎), �𝑓𝑓(𝑏𝑏)�−1, 𝑐𝑐′)) ≤𝑐𝑐′∈𝐺𝐺′ ⋁ (𝜇𝜇′�𝑓𝑓(𝑐𝑐)�⊗∗′ �𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑏𝑏−1),𝑓𝑓(𝑐𝑐)�)𝑐𝑐∈𝐺𝐺   

(since 𝑐𝑐′ ∈ 𝐺𝐺′ ,∃𝑐𝑐 ∈ 𝐺𝐺 such that 𝑓𝑓(𝑐𝑐) = 𝑐𝑐′) 

= ⋁ (f−1(μ′)(c) ⊗ ∗ (a, b−1, c)).c∈G   

Thus, 𝑓𝑓−1(𝜇𝜇′) is a fuzzy subgroup of 𝑮𝑮. 

For being fuzzy normal subgroup of 𝑓𝑓−1(𝜇𝜇′)  on 𝑮𝑮,  by the definition of fuzzy normal subgroups, 

we have to prove ⋁ (𝑓𝑓−1(𝜇𝜇′)(𝑐𝑐) ⊗ ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐))𝑐𝑐∈𝐺𝐺 ≤ ⋁ (𝑓𝑓−1(𝜇𝜇′)(𝑡𝑡) ⊗ ∗ (𝑏𝑏,𝑎𝑎, 𝑡𝑡)).𝑡𝑡∈𝐺𝐺  

So, we have 

⋁ (𝑓𝑓−1(𝜇𝜇′)(𝑐𝑐) ⊗ ∗ (𝑎𝑎, 𝑏𝑏, 𝑐𝑐))𝑐𝑐∈𝐺𝐺 = ⋁ (𝜇𝜇′(𝑓𝑓(𝑐𝑐)) ⊗∗ ′(𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑐𝑐))) 𝑐𝑐∈𝐺𝐺   

= ⋁ (𝜇𝜇′(𝑐𝑐′) ⊗ ∗ ′(𝑓𝑓(𝑎𝑎), 𝑓𝑓(𝑏𝑏), 𝑐𝑐′))𝑐𝑐′∈𝐺𝐺′  (where 𝑓𝑓(𝑐𝑐) = 𝑐𝑐′) 

≤ ⋁ (𝜇𝜇′(𝑐𝑐") ⊗ ∗ ′(𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑎𝑎), 𝑐𝑐"))𝑐𝑐"∈𝐺𝐺′  (since 𝜇𝜇′ is a fuzzy normal subgroup of 𝑮𝑮′)  

≤ ⋁ (𝜇𝜇′�𝑓𝑓(𝑡𝑡)�⊗ ∗ ′(𝑓𝑓(𝑏𝑏), 𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑡𝑡))) 𝑡𝑡∈𝐺𝐺  (since 𝑐𝑐" ∈ 𝐺𝐺′ implies ∃ 𝑡𝑡 ∈ 𝐺𝐺 such that 𝑓𝑓(𝑡𝑡) = 𝑐𝑐") 

=  ⋁ (𝑓𝑓−1(𝜇𝜇′)(𝑡𝑡) ⊗ ∗ (𝑏𝑏,𝑎𝑎, 𝑡𝑡)).𝑡𝑡∈𝐺𝐺   

Theorem 2.12. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> and 𝑮𝑮′ =< 𝐺𝐺′,≈ ′,∗ ′ > be two F-groups, 𝑓𝑓:𝑮𝑮 → 𝑮𝑮′   be an 

embedding and monomorphism. Let 𝜇𝜇 be a fuzzy (normal) subgroup of 𝑮𝑮, then the image 𝑓𝑓[𝜇𝜇] is a 

fuzzy (normal) subgroup of 𝑮𝑮′ . 
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Proof. Since 𝑓𝑓 is monomorphism, then for every 𝑐𝑐,𝑑𝑑 ∈ 𝐺𝐺′   there exist unique elements 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 

such that 𝑓𝑓(𝑎𝑎) = 𝑐𝑐,𝑓𝑓(𝑏𝑏) = 𝑑𝑑 thus 𝑓𝑓[𝜇𝜇](𝑐𝑐) = 𝜇𝜇(𝑎𝑎), 𝑓𝑓[𝜇𝜇](𝑑𝑑) = 𝜇𝜇(𝑏𝑏). 

𝑓𝑓[𝜇𝜇](𝑐𝑐) ⊗𝑓𝑓[𝜇𝜇](𝑑𝑑) = 𝜇𝜇(𝑎𝑎) ⊗𝜇𝜇(𝑏𝑏) 

≤∨𝑚𝑚∈𝐺𝐺 �𝜇𝜇(𝑚𝑚) ⊗∗ (𝑎𝑎, 𝑏𝑏−1,𝑚𝑚)�  (since 𝜇𝜇 is a fuzzy subgroup of 𝐆𝐆) 

=∨𝑚𝑚∈𝐺𝐺 �𝜇𝜇(𝑚𝑚) ⊗∗′ �𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑏𝑏−1),𝑓𝑓(𝑚𝑚)�� 

=∨𝑚𝑚′ ∈𝐺𝐺′ (𝑓𝑓[𝜇𝜇](𝑚𝑚′) ⊗∗′ (𝑐𝑐,𝑑𝑑−1,𝑚𝑚′)). 

where 𝑓𝑓(𝑚𝑚) = 𝑚𝑚′ . Thus, 𝑓𝑓[𝜇𝜇] is a fuzzy subgroup of 𝑮𝑮′ . 

By the previous reason, for every 𝑎𝑎′, 𝑏𝑏′, 𝑐𝑐′ ∈ 𝐺𝐺′ there exist unique elements 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐺𝐺 such that 

𝑓𝑓(𝑎𝑎) = 𝑎𝑎′,𝑓𝑓(𝑏𝑏) = 𝑏𝑏′,𝑓𝑓(𝑐𝑐) = 𝑐𝑐′. 

∨𝑐𝑐′∈𝐺𝐺′ 𝑓𝑓[𝜇𝜇](𝑐𝑐′) ⊗∗′ (𝑎𝑎′, 𝑏𝑏′, 𝑐𝑐′) =∨𝑐𝑐∈𝐺𝐺 𝜇𝜇(𝑐𝑐) ⊗∗′ (𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑐𝑐) 

=∨c∈G μ(c) ⊗∗ (a, b, c) 

≤∨𝑐𝑐"∈𝐺𝐺 𝜇𝜇(𝑐𝑐") ⊗∗ (𝑏𝑏,𝑎𝑎, 𝑐𝑐") (since 𝜇𝜇 is a fuzzy normal subgroup of 𝐆𝐆) 

=∨𝑐𝑐"∈𝐺𝐺 𝜇𝜇(𝑐𝑐") ⊗∗ ′(𝑓𝑓(𝑏𝑏),𝑓𝑓(𝑎𝑎),𝑓𝑓(𝑐𝑐")) 

=∨𝑡𝑡∈𝐺𝐺′ 𝑓𝑓[𝜇𝜇](𝑡𝑡) ⊗∗ ′(𝑏𝑏′,𝑎𝑎′, 𝑡𝑡) 

where 𝑓𝑓(𝑐𝑐") = 𝑡𝑡. Hence, 𝑓𝑓[𝜇𝜇] is a fuzzy normal subgroup of 𝑮𝑮′ . 

Defenition 2.13. Let 𝑮𝑮 =< 𝐺𝐺,≈,∗> be an F-group. A binary L-relation (binary fuzzy relation) 𝜃𝜃 

on 𝐺𝐺 is called an F-congruence on 𝐺𝐺 if  

(i) 𝜃𝜃 is a fuzzy equivalence on 𝐺𝐺, 

(ii) 𝜃𝜃 is compatible with ≈, i.e. (𝑎𝑎 ≈ 𝑏𝑏) ⊗ (𝑎𝑎′ ≈ 𝑏𝑏′) ⊗𝜃𝜃(𝑎𝑎,𝑎𝑎′) ≤ 𝜃𝜃(𝑏𝑏, 𝑏𝑏′) for every 𝑎𝑎,𝑎𝑎′, 𝑏𝑏, 𝑏𝑏′ ∈

𝐺𝐺, 

(iii) �⊗𝑖𝑖=1
3 𝜃𝜃(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖) � ⊗∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ≤∗ (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3)  for every 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3 ∈ 𝐺𝐺. 

Remark 2.14. The condition (ii) in Definition 2.13 holds iff ≈⊆ 𝜃𝜃. [3, Lemma 1.82]. 

Definition 2.15. Let θ be an F-congruence on an F-group 𝑮𝑮 =< 𝐺𝐺,≈,∗>. An F-quotient group 𝐺𝐺 

by 𝜃𝜃 is an F-group 𝑮𝑮 𝜃𝜃⁄ =< 𝐺𝐺 𝜃𝜃⁄ ,≈𝑮𝑮 𝜃𝜃⁄ ,∗𝑮𝑮 𝜃𝜃⁄ > such that 

(i) [𝑎𝑎]𝜃𝜃 ≈𝑮𝑮 𝜃𝜃⁄ [𝑏𝑏]𝜃𝜃 = 𝜃𝜃(𝑎𝑎, 𝑏𝑏)  ∀ [𝑎𝑎]𝜃𝜃 , [𝑏𝑏]𝜃𝜃 ∈ 𝐺𝐺 𝜃𝜃⁄ ; 

(ii) ∗𝑮𝑮 𝜃𝜃⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃) =∨𝑐𝑐∈𝐺𝐺 �∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3)�,  where 𝐺𝐺 𝜃𝜃⁄ = {[𝑎𝑎]𝜃𝜃 |𝑎𝑎 ∈ 𝐺𝐺}  and 

[𝑎𝑎]𝜃𝜃 = {𝑎𝑎′ ∈ 𝐺𝐺|𝜃𝜃(𝑎𝑎,𝑎𝑎′) = 1}. 

Remark 2.16. An F-quotient group is well-defined. First, it is clear ≈𝑮𝑮 𝜃𝜃⁄  is a well-defined. Second, 

∗𝑮𝑮 𝜃𝜃⁄  is a well-defined fuzzy operation on 𝐺𝐺 𝜃𝜃⁄  which is extensional w.r.t. ≈𝑮𝑮 𝜃𝜃⁄ .  

�⊗𝑖𝑖=1
3 �[𝑎𝑎𝑖𝑖]𝜃𝜃 ≈𝑮𝑮 𝜃𝜃⁄ [𝑏𝑏𝑖𝑖]𝜃𝜃�� ⊗∗𝑮𝑮 𝜃𝜃⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃) =       

=  �⊗𝑖𝑖=1
3 𝜃𝜃(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖) �  ⊗∨𝑐𝑐∈𝐺𝐺 (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3))  
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= 𝜃𝜃(𝑎𝑎1, 𝑏𝑏1)⊗𝜃𝜃(𝑎𝑎2,𝑏𝑏2) ⊗  𝜃𝜃(𝑎𝑎3,𝑏𝑏3) ⊗∨𝑐𝑐∈𝐺𝐺 �∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3)� 

=∨𝑐𝑐∈𝐺𝐺 �𝜃𝜃(𝑎𝑎1,𝑏𝑏1)⊗𝜃𝜃(𝑎𝑎2, 𝑏𝑏2) ⊗  𝜃𝜃(𝑎𝑎3,𝑏𝑏3) ⊗�∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3)�� 

(by the inequality (1)) 

≤∨𝑐𝑐∈𝐺𝐺 (∗ (𝑏𝑏1, 𝑏𝑏2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐, 𝑏𝑏3)) = ∗𝑮𝑮 𝜃𝜃⁄ ([𝑏𝑏1]𝜃𝜃 , [𝑏𝑏2]𝜃𝜃 , [𝑏𝑏3]𝜃𝜃).   

Now, we prove that ≈𝐆𝐆 θ⁄  satisfies in the functionality condition. 

∗𝑮𝑮 𝜃𝜃⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃) ⊗∗𝑮𝑮 𝜃𝜃⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑏𝑏3]𝜃𝜃) =   

=∨𝑐𝑐∈𝐺𝐺 �∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐, 𝑎𝑎3)�⊗∨𝑐𝑐′∈𝐺𝐺 (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐′) ⊗𝜃𝜃(𝑐𝑐′, 𝑏𝑏3))    

=∨𝑐𝑐 ,𝑐𝑐′∈𝐺𝐺 [(∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐)) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3) ⊗ (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐′)) ⊗𝜃𝜃(𝑐𝑐′, 𝑏𝑏3)]   

≤∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ⊗∗ (𝑎𝑎1,𝑎𝑎2,𝑏𝑏3) ≤ (𝑎𝑎3 ≈ 𝑏𝑏3) ≤ 𝜃𝜃(𝑎𝑎3, 𝑏𝑏3) = �[𝑎𝑎3]𝜃𝜃 ≈𝑮𝑮 𝜃𝜃⁄ [𝑏𝑏3]𝜃𝜃�. 

Finally, it is simply proved that 𝑮𝑮 𝜃𝜃⁄  is an F-group. 

Definition 2.17. Let 𝑮𝑮 and 𝑮𝑮′ be two F-groups. let ℎ:𝑮𝑮 → 𝑮𝑮′ be a morphism. Then the kernel of 

ℎ, the binary L-set (fuzzy set) 𝜃𝜃ℎ ∶ 𝐺𝐺 × 𝐺𝐺 → 𝐿𝐿, is defined by 

𝜃𝜃ℎ(𝑎𝑎, 𝑏𝑏) = ℎ(𝑎𝑎) ≈′ ℎ(𝑏𝑏). 

Theorem 2.18. Let 𝑮𝑮 and 𝑮𝑮′ be two F-groups. let ℎ:𝑮𝑮 → 𝑮𝑮′ be an embedding. Then 𝜃𝜃ℎ  is an F- 

congruence on 𝑮𝑮. 

Proof. It is clear that 𝜃𝜃ℎ  is a fuzzy equivalence on 𝐺𝐺. Now, for every 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈ 𝐺𝐺 we have 

(𝑎𝑎 ≈ 𝑏𝑏) ⊗ (𝑐𝑐 ≈ 𝑑𝑑) ⊗𝜃𝜃ℎ(𝑎𝑎, 𝑐𝑐) = �ℎ(𝑎𝑎) ≈′ ℎ(𝑏𝑏)�⊗ ��ℎ(𝑐𝑐) ≈′ ℎ(𝑑𝑑)� ⊗ (ℎ(𝑎𝑎) ≈′ ℎ(𝑐𝑐)� ≤

  ℎ(𝑏𝑏) ≈′ ℎ(𝑑𝑑) = 𝜃𝜃ℎ(𝑏𝑏,𝑑𝑑). i.e. 𝜃𝜃ℎ  is compatible w.r.t. ≈. 

�⊗𝑖𝑖=1
3 𝜃𝜃ℎ(𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖)� ⊗∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) = �⊗𝑖𝑖=1

3 (ℎ(𝑎𝑎𝑖𝑖) ≈′ ℎ(𝑏𝑏𝑖𝑖))� ⊗∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) 

= �⊗𝑖𝑖=1
3 (𝑎𝑎𝑖𝑖 ≈ 𝑏𝑏𝑖𝑖)� ⊗∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ≤∗ (𝑏𝑏1,𝑏𝑏2,𝑏𝑏3), 

for every 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 ∈ 𝐺𝐺. Altogether, 𝜃𝜃ℎ  is an F-congruence on 𝑮𝑮. 

Definition 2.19. For every F-group 𝑮𝑮 and 𝜃𝜃 an F-congruence on 𝑮𝑮, a mapping ℎ𝜃𝜃 :𝑮𝑮 → 𝑮𝑮 𝜃𝜃⁄  

where ℎ𝜃𝜃(𝑎𝑎) = [𝑎𝑎]𝜃𝜃  for all 𝑎𝑎 ∈ 𝐺𝐺 is called a natural mapping. 

Theorem 2.20. A natural mapping ℎ𝜃𝜃 :𝑮𝑮 → 𝑮𝑮 𝜃𝜃 ⁄  is an epimorphism. 

Proof. For any 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 we have 

𝑎𝑎 ≈𝑮𝑮 𝑏𝑏 ≤ 𝜃𝜃(𝑎𝑎, 𝑏𝑏) = [𝑎𝑎]𝜃𝜃 ≈𝑮𝑮 𝜃𝜃  ⁄ [𝑏𝑏]𝜃𝜃 = ℎ𝜃𝜃(𝑎𝑎) ≈𝑮𝑮 𝜃𝜃  ⁄ ℎ𝜃𝜃(𝑏𝑏). 

Furthermore, for every 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 ∈ 𝐺𝐺 we have 

∗𝑮𝑮 (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) =∗𝑮𝑮 (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ⊗𝜃𝜃(𝑎𝑎3,𝑎𝑎3)  ≤∨𝑐𝑐∈𝐺𝐺 �∗𝑮𝑮 (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3)� 

=∗𝑮𝑮 𝜃𝜃  ⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃) 
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=∗𝑮𝑮 𝜃𝜃  ⁄ �ℎ𝜃𝜃(𝑎𝑎1),ℎ𝜃𝜃(𝑎𝑎2),ℎ𝜃𝜃(𝑎𝑎3)�. 

Surjectivity of ℎ𝜃𝜃  is evident. 

Theorem 2.21. (first isomorphism theorem). Let ℎ:𝑮𝑮 → 𝑮𝑮′ be an embedding of F-groups. Then 

there is an isomorphism 𝑔𝑔:𝑮𝑮 ∕ 𝜃𝜃ℎ → 𝑮𝑮′ such that ℎ𝜃𝜃ℎ ∘ 𝑔𝑔 = ℎ. 

Proof. Let 𝑔𝑔:𝐺𝐺 𝜃𝜃ℎ⁄ → 𝐺𝐺′  be a mapping with 𝑔𝑔�[𝑎𝑎]𝜃𝜃ℎ � = ℎ(𝑎𝑎) for all 𝑎𝑎 ∈ 𝐺𝐺. 

Evidently, ℎ𝜃𝜃ℎ ∘ 𝑔𝑔 = ℎ. Furthermore, we have 

[𝑎𝑎]𝜃𝜃ℎ ≈
𝑮𝑮 𝜃𝜃ℎ⁄ [𝑏𝑏]𝜃𝜃ℎ = 𝜃𝜃ℎ(𝑎𝑎, 𝑏𝑏) = ℎ(𝑎𝑎) ≈′ ℎ(𝑏𝑏) = 𝑔𝑔�[𝑎𝑎]𝜃𝜃ℎ � ≈

′ 𝑔𝑔�[𝑏𝑏]𝜃𝜃ℎ �. 

From the surjectivity of ℎ, it follws that 𝑔𝑔  is surjective. 

To check the condition (ii) for morphisms of F-groups, we have 

∗𝑮𝑮 𝜃𝜃ℎ⁄ �[𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ � = 

=∨𝑐𝑐∈𝐺𝐺 �∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃ℎ(𝑐𝑐,𝑎𝑎3)� 

=∨𝑐𝑐∈𝐺𝐺 �∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗ (ℎ(𝑐𝑐) ≈′ ℎ(𝑎𝑎3)� 

=∨𝑐𝑐∈𝐺𝐺 (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗ (𝑐𝑐 ≈ 𝑎𝑎3) (because ℎ is an embedding) 

≤∗ (a1, a2, a3) (by the inequality (3)) 

=∗′ (ℎ(𝑎𝑎1),ℎ(𝑎𝑎2),ℎ(𝑎𝑎3)) 

=∗ ′�𝑔𝑔([𝑎𝑎1]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎2]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎3]𝜃𝜃ℎ )�, 

where [𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ ∈ (𝐺𝐺 𝜃𝜃ℎ⁄ ). This implies that  

 ∗𝐺𝐺 𝜃𝜃ℎ⁄ �[𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ � ≤∗ ′�𝑔𝑔([𝑎𝑎1]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎2]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎3]𝜃𝜃ℎ )�. (4) 

On the other hand, since 𝜃𝜃ℎ  is an F-congruence on 𝑮𝑮, then by Theorem 2.20, ℎ𝜃𝜃ℎ :𝑮𝑮 → 𝑮𝑮 𝜃𝜃ℎ⁄  is an 

epimorphism on 𝑮𝑮 𝜃𝜃ℎ⁄ . Thus, ∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) ≤∗𝑮𝑮 𝜃𝜃ℎ⁄ (ℎ𝜃𝜃ℎ (𝑎𝑎1),ℎ𝜃𝜃ℎ (𝑎𝑎2),ℎ𝜃𝜃ℎ (𝑎𝑎3)).  Hence, we have 

∗ ′�𝑔𝑔([𝑎𝑎1]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎2]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎3]𝜃𝜃ℎ )� = ∗′ (ℎ(𝑎𝑎1),ℎ(𝑎𝑎2),ℎ(𝑎𝑎3)) 

=∗ (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) 

≤∗𝑮𝑮 𝜃𝜃ℎ⁄ (ℎ𝜃𝜃ℎ (𝑎𝑎1),ℎ𝜃𝜃ℎ (𝑎𝑎2),ℎ𝜃𝜃ℎ (𝑎𝑎3)) 

=∗𝑮𝑮 𝜃𝜃ℎ⁄ �[𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ �. 

Therefore,  

 ∗ ′�𝑔𝑔([𝑎𝑎1]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎2]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎3]𝜃𝜃ℎ )� ≤∗𝑮𝑮 𝜃𝜃ℎ⁄ �[𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ �. (5) 

By (4) and (5), ∗𝑮𝑮 𝜃𝜃ℎ⁄ �[𝑎𝑎1]𝜃𝜃ℎ , [𝑎𝑎2]𝜃𝜃ℎ , [𝑎𝑎3]𝜃𝜃ℎ � =∗ ′�𝑔𝑔([𝑎𝑎1]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎2]𝜃𝜃ℎ ),𝑔𝑔([𝑎𝑎3]𝜃𝜃ℎ )�.  

This means that 𝑔𝑔 is isomorphism. 

Definition 2.22. Let 𝜑𝜑,𝜃𝜃  be two F-congruences of an F-group 𝑮𝑮 and 𝜃𝜃 ⊆ 𝜑𝜑 Then we let 𝜑𝜑 𝜃𝜃⁄  

denote a binary L-relation (binary fuzzy relation) on (𝑮𝑮 ∕ 𝜃𝜃) defined by (𝜑𝜑 𝜃𝜃⁄ )([𝑎𝑎]𝜃𝜃 , [𝑏𝑏]𝜃𝜃) = 𝜑𝜑(𝑎𝑎, 𝑏𝑏) 
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for all 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺.  

Theorem 2.23. Let 𝜑𝜑,𝜃𝜃  be two F-congruences of an F-group 𝑮𝑮 and 𝜃𝜃 ⊆ 𝜑𝜑 Then 𝜑𝜑 𝜃𝜃⁄  is an 

F-congruence of (𝑮𝑮 ∕ 𝜃𝜃).  

Proof. Clearly, 𝜑𝜑 𝜃𝜃⁄  is a fuzzy equivalence on (𝑮𝑮 𝜃𝜃⁄ ). For all 𝑎𝑎, 𝑏𝑏 ∈ 𝐺𝐺 we have  

[𝑎𝑎]𝜃𝜃 ≈𝑮𝑮 𝜃𝜃⁄ [𝑎𝑎]𝜃𝜃 = 𝜃𝜃(𝑎𝑎, 𝑏𝑏) ≤ 𝜑𝜑(𝑎𝑎, 𝑏𝑏) = (𝜑𝜑 𝜃𝜃⁄ )([𝑎𝑎]𝜃𝜃 , [𝑏𝑏]𝜃𝜃),  

Therefore ≈𝐆𝐆 𝜃𝜃⁄ ⊆ 𝜑𝜑 𝜃𝜃⁄ . Due to Remark 2.14, 𝜑𝜑 𝜃𝜃⁄  is compatible w.r.t. ≈𝑮𝑮 𝜃𝜃⁄ . 

To check condition (iii) in the definition of F-congruences, for arbitrary elements 

[𝑎𝑎1]𝜃𝜃 , [𝑏𝑏1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑏𝑏2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃 , [𝑏𝑏3]𝜃𝜃 ∈ G 𝜃𝜃⁄ , we have 

�⊗𝑖𝑖=1
3 (𝜑𝜑 𝜃𝜃⁄ )([𝑎𝑎𝑖𝑖]𝜃𝜃 , [𝑏𝑏𝑖𝑖]𝜃𝜃)� ⊗∗𝐆𝐆 𝜃𝜃⁄ ([𝑎𝑎1]𝜃𝜃 , [𝑎𝑎2]𝜃𝜃 , [𝑎𝑎3]𝜃𝜃) = 

= �⊗𝑖𝑖=1
3 𝜑𝜑(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)� ⊗ ⋁𝑐𝑐∈G (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜃𝜃(𝑐𝑐,𝑎𝑎3)) 

≤ �⊗𝑖𝑖=1
3 𝜑𝜑(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖)� ⊗ ⋁𝑐𝑐∈G (∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜑𝜑(𝑐𝑐,𝑎𝑎3)) 

= ⋁𝑐𝑐∈G�⊗𝑖𝑖=1
3 𝜑𝜑(𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖) ⊗∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜑𝜑(𝑐𝑐,𝑎𝑎3)� (by the inequality (1)) 

= ⋁𝑐𝑐∈G [𝜑𝜑(𝑎𝑎1,𝑏𝑏1)⊗𝜑𝜑(𝑎𝑎2, 𝑏𝑏2) ⊗𝜑𝜑(𝑎𝑎3,𝑏𝑏3)⊗∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐) ⊗𝜑𝜑(𝑐𝑐, 𝑎𝑎3)] 

≤ ⋁𝑐𝑐∈G [𝜑𝜑(𝑎𝑎1, 𝑏𝑏1)⊗𝜑𝜑(𝑎𝑎2,𝑏𝑏2) ⊗𝜑𝜑(𝑐𝑐, 𝑏𝑏3) ⊗∗ (𝑎𝑎1,𝑎𝑎2, 𝑐𝑐)] 

 ≤ ⋁𝑐𝑐∈G (∗ (𝑏𝑏1,𝑏𝑏2, 𝑐𝑐) ⊗𝜑𝜑(𝑐𝑐, 𝑏𝑏3)) =∗𝐆𝐆 𝜃𝜃⁄ ([𝑏𝑏1]𝜃𝜃 , [𝑏𝑏2]𝜃𝜃 , [𝑏𝑏3]𝜃𝜃). 

Therefore, 𝜑𝜑 𝜃𝜃⁄  is an F-congruence on (𝑮𝑮 ∕ 𝜃𝜃). 

Theorem 2.24. (second isomorphism theorem). Suppose 𝑮𝑮 is an F-group and 𝜑𝜑,𝜃𝜃  are two 

F-congruences on 𝑮𝑮 and 𝜃𝜃 ⊆ 𝜑𝜑. Then the mapping  

ℎ: (𝐆𝐆 ∕ 𝜃𝜃) ∕ (𝜑𝜑 𝜃𝜃⁄ ) ⟶𝐆𝐆 ∕ 𝜑𝜑 

defined by ℎ�[[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ � = [𝑎𝑎]𝜑𝜑  is a weak isomorphism.  

Proof. For every [[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ , [[𝑏𝑏]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ ∈ (𝐺𝐺 ∕ 𝜃𝜃) ∕ (𝜑𝜑 𝜃𝜃⁄ ) we have 

[[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ ≈(𝑮𝑮∕𝜃𝜃)∕(𝜑𝜑 𝜃𝜃⁄ ) [[𝑏𝑏]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ = (𝜑𝜑 𝜃𝜃⁄ )([𝑎𝑎]𝜃𝜃 , [𝑏𝑏]𝜃𝜃) = 𝜑𝜑(𝑎𝑎, 𝑏𝑏) =  [𝑎𝑎]𝜑𝜑 ≈𝑮𝑮∕𝜑𝜑 [𝑏𝑏]𝜑𝜑 .  

Since for all 𝑎𝑎 ∈ G we have ℎ�[[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ � = [𝑎𝑎]𝜑𝜑 ,  ℎ is surjective. 

Also, we suppose [[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ , [[𝑏𝑏]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ , [[𝑐𝑐]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ ∈ (G 𝜃𝜃⁄ ) (𝜑𝜑 𝜃𝜃)⁄⁄ ,  then 

∗(𝐆𝐆 𝜃𝜃)⁄ (𝜑𝜑 𝜃𝜃)⁄⁄ �[[𝑎𝑎]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ , [[𝑏𝑏]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ , [[𝑐𝑐]𝜃𝜃 ]𝜑𝜑 𝜃𝜃⁄ � =   

            =⋁[𝑒𝑒]𝜃𝜃∈G∕𝜃𝜃�∗𝐆𝐆 𝜃𝜃⁄ ([𝑎𝑎]𝜃𝜃 , [𝑏𝑏]𝜃𝜃 , [𝑒𝑒]𝜃𝜃) ⊗ (𝜑𝜑 𝜃𝜃⁄ )([𝑒𝑒]𝜃𝜃 , [𝑐𝑐]𝜃𝜃)� 

= ⋁[𝑒𝑒]𝜃𝜃∈G∕𝜃𝜃 [⋁𝑒𝑒′∈G(∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒′)⊗𝜃𝜃(𝑒𝑒′ , 𝑒𝑒)) ⊗𝜑𝜑(𝑒𝑒, 𝑐𝑐) ] 

≤ ⋁[𝑒𝑒]𝜃𝜃∈G∕𝜃𝜃 [⋁𝑒𝑒′∈G (∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒′) ⊗𝜑𝜑(𝑒𝑒′ , 𝑒𝑒)) ⊗𝜑𝜑(𝑒𝑒, 𝑐𝑐) ] 

≤ ⋁[𝑒𝑒]𝜃𝜃∈G∕𝜃𝜃 [⋁𝑒𝑒′∈G (∗ (𝑎𝑎, 𝑏𝑏, 𝑒𝑒′) ⊗𝜑𝜑(𝑒𝑒′, 𝑐𝑐)) ] 

= ⋁[𝑒𝑒]𝜃𝜃∈G∕𝜃𝜃�∗𝐆𝐆 𝜑𝜑⁄ �[𝑎𝑎]𝜑𝜑 , [𝑏𝑏]𝜑𝜑 , [𝑐𝑐]𝜑𝜑�� 
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                          =∗𝐆𝐆 𝜑𝜑⁄ �[𝑎𝑎]𝜑𝜑 , [𝑏𝑏]𝜑𝜑 , [𝑐𝑐]𝜑𝜑�. 

Thus, ℎ is a weak isomorphism. 
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