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Abstract 

Based on progressively type-I censored samples, this paper discusses some estimation methods in 

step-partially accelerated life tests when the lifetimes of items under use condition follow the 

exponential distribution. Maximum likelihood estimations for the considered parameters are obtained in 

closed forms. The observed Fisher information matrix is derived to calculate confidence intervals for 

the considered parameters. Bayesian estimations for the parameters are carried out based on (a) 

informative prior for the scale parameter and discrete prior for the acceleration factor, (b) both the 

symmetric loss (squared error loss) function and asymmetric loss (general entropy loss) function. The 

resulting Bayes estimates are obtained in closed forms. The precision of the estimates and a comparison 

among them are investigated through a Monte Carlo simulation study. 

Keywords: Partially accelerated life tests, Progressive type-I censoring, Exponential distribution, 

Maximum likelihood and Bayesian estimations, general entropy loss, Simulation. 

1. Introduction 

Censoring is of great importance in planning duration experiments in reliability and lifetime studies 

whenever the experimenter does not observe the lifetimes of all test units. 

The traditional censoring schemes (type-I and type-II censoring) do not allow for units to be removed 

from the test at points other than the terminal point of the experiment. This allowance will be important 
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when a compromise between reduced time of experimentation and the observations of at least some 

extreme lifetimes are sought. Also when some of the surviving units in the experiment that are removed 

early one can be used for some other test. These reasons lead us into the area of progressive censoring. 

Accelerated life tests (ALTs) are often used for reliability analysis. Test units are run at 

higher-than-usual stress levels to induce early failures. A model relating life length to stress is fitted to the 

accelerated failure times and then extrapolated to estimate the failure time distribution under normal use 

condition. 

The stress loading in an ALT can be applied in different ways: commonly used methods are constant 

stress, progressive stress and step stress. Nelson (1990, Chapter 1) discussed their advantages and 

disadvantages. 

In ALTs the units are tested only at accelerated conditions (see AL-Hussaini and Abdel-Hamid (2006)) 

whereas in partially ALTs (PALTs) the units are tested at both accelerated and normal conditions. PALTs 

include two types, one is called step PALTs (see Abdel-Hamid and AL-Hussaini (2008)) and the other is 

called constant PALTs (see Abdel-Hamid (2009)). 

The step PALT (which is considered in this paper) permits the test to be changed from normal use 

condition to accelerated condition at a predetermined time. Bai and Chung (1992) used the maximum 

likelihood (ML) method to estimate the scale parameter and the acceleration factor (the ratio of the main 

life at normal condition to that at accelerated condition) for exponentially distributed lifetime using type-I 

censoring data, and in (1993) Bai, et al obtained the same results when the lifetime is subjected to the 

log-normal distribution. 

The novelty in this paper is to apply the step PALTs to the exponential distribution using 

progressively type-I censored data and then estimate the parameters under consideration using ML and 

Bayes methods. 

Several authors investigated inferences under progressively censored data using different lifetime 

distributions, among others, Viveros and Balakrishnan (1994), Balakrishnan and Sandhu (1995, 1996), 

Balasooriya and Balakrishnan (2000), Ng, et al (2002, 2004) and Soliman (2005, 2008). Gouno, et al 

(2004) considered a k -level step-stress ALT under progressive type-I censoring while Wu, et al (2008) 

discussed the same problem considering progressive type-I censoring with grouped data. Balasooriya and 

Low (2004) discussed progressively type-I censored variable-sampling plans for Weibull lifetime 

distribution under competing causes of failures. 
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The exponential distribution is useful to describe failure times of units which subject to wear out. Pal, 

et al (2006, p.152) indicated that failure times of electric bulbs, appliances, batteries, transistors, etc can be 

modeled by exponential distribution. Therefore, this distribution is frequently discussed in reliability 

applications. 

The rest of the paper is organized as follows: In Section 2, a description of the model and a 

discussion of progressive type-I censoring scheme are presented. Closed forms of the maximum likelihood 

estimates (MLEs) of the parameters under consideration are derived in Section 3. Based on the squared 

error loss (SEL) and general entropy loss (GEL) functions, Bayesian estimation of the parameters is 

obtained in Section 4. A simulation study and an illustrative example are presented in Section 5. Finally, 

some concluding remarks are given in Section 6. 

2. Model Description and Progressive Type-I Censoring 

According to step PALT each of n  test units under consideration is first run at normal condition and 

if it does not fail by stress change time τ , then the test is changed to accelerated condition and held until 

all units fail. Suppose that Y  is the total lifetime of a unit under normal and accelerated conditions. Thus  

 
0

( )
T T

Y
T T

τ
τ τ β τ

, < ≤ ,
=  + − / , > ,

 (2.1) 

where T  is the lifetime of a unit at normal condition, τ  is the stress change time and ( 1)β >  is the 

acceleration factor. 

Suppose also that the random variable T  has exponential distribution with scale parameter ( 0)θ > . 

Thus the cumulative distribution function (CDF) of T  is given by 

 ( ) 1 exp( ) 0F t t tθ= − − / , > .  (2.2) 

2.1 Progressive Type-I Censoring Scheme 

The progressive type-I censoring is applied to step PALT as follows: The n  test units are initially 

placed on normal stress condition and run until time 1( 0)τ > , at which point the number of failed units 

1n  are counted and 1R  surviving units are removed from the test; starting from time 1τ  the remainder 
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1 1n n R− −  surviving units are run until time 2τ  at which point the number of failed units 2n  are 

counted and 2R  surviving units are removed from the test. The test continues in this manner until time 

kτ  at which point the remainder k kn n R− −  surviving units are then placed on accelerated condition 

and run until time 1kτ +  at which point the number of failures 1kn +  are counted and 1kR +  surviving 

units are removed from the test. The test continues in this manner under accelerated condition until time 

Kτ  at which 1
1 1

K K
K i i i iR n n R−

= == −Σ −Σ  surviving units are removed, thereby terminate the test. The 

removed units are often used in other experiments in the same or at different facilities. The censoring 

times 1 … …k Kτ τ τ, , , ,  are fixed in advance. 

The experimenter may notice the following iid observations: 
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The PDF of a unit under step PALT may be written as follows. 
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 (2.4) 

The survival function (SF) and hazard rate function (HRF) of the random variable Y  are given, 

respectively, by 

 1
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3. Maximum Likelihood Estimation 

Based on the censoring times ( 1 … …k Kτ τ τ, , , , ) and progressively type-I censored sample given in 

(2.3), the likelihood function can be written in the form 

 ( )L θ β, ;y _ 1 1 2 2
1 1 1 1

( )[1 ( )] ( )[1 ( )]
i i

i i

n nk K
R R

ij i ij i
i j i k j

f y F f y Fτ τ
= = = + =

− − .∏∏ ∏∏  (3.1) 

Based on Equations (2.4) and (3.1), the log-likelihood function ( ) log ( )Lθ β θ β, ; = , ;y y  is given 

by 
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 (3.2) 

where ijy  is the thj  observed failure in the thi  pre-specified time interval 1 0] ] 0i iτ τ τ− , , = , 

1 21 1
( )k K

i ii i k
N n N n

= = +
= =∑ ∑  is the total number of observed failures before(after) kτ  and 

1 2N N N= + . 

The likelihood equations are then given by 

 2
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0 ( )
ink K

k i i i ij k i i
i j i k
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 
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∂
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 (3.3) 

 20 N Q W
β β θ
∂ +

= = − ,
∂


 (3.4) 

where 
1

( )K
i i i ki k

Q n R τ τ
= +

= −∑  and 
1 1

( )iK n
ij ki k j

W y τ
= + =

= −∑ ∑ . 

The ML estimates (MLEs) θ̂  and β̂  of θ  and β  can be obtained by solving Equations (3.3) 

and (3.4) with respect to θ  and β . Thus 
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where Q  and W  are as given above. 

3.1 Approximate Confidence Interval 

The local Fisher information matrix, F , for MLEs ˆ ˆ( )θ β,  is the 2 2×  symmetric matrix of 

negative second partial derivatives of ( )θ β,  with respect to θ  and β . The inverse of F  is the local 

estimate of the asymptotic variance-covariance matrix of θ̂  and β̂ , that is 
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where the caret  ̂  indicates that the derivative is calculated at ˆ ˆ( )θ β, . The elements of this matrix can be 

easily obtained. 

Following the general asymptotic theory of MLEs, the sampling distribution of 
ˆ

ˆvar( )

θ θ

θ

−
 and 

ˆ

ˆvar( )

β β

β

−
 can be approximated by astandard normal distribution which is useful in constructing 

confidence intervals (CIs) for the unknown parameters. 

A two sided 100(1 )%α−  normal approximation CIs for the two parameters θ  and β  can then be 

constructed as 

 2 2
ˆ ˆ ˆ ˆvar( ) and var( )z zα αθ θ β β/ /± ± ,  
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where 2zα /  is the value of standard normal random variable leaving an area 2α /  to the right and both 

of ˆvar( )θ  and ˆvar( )β  can be obtained from (3.6). The value 2zα /  should be replaced by 2tα /
  

(the value of t -distribution leaving an area 2α /  to the right) if 30n < . 

4. Bayesian Estimation 

The Bayesian approach plays an important rule in analyzing failure data and other time-to-event. It 

has been proposed as an alternative procedure to traditional statistical perspective.  

Due to the complicated computations arising from a general Bayesian procedure (see, for example, 

Abdel-Hamid (2008)), it is preferred to consider an alternative procedure which may be regarded as an 

approximation to a more general procedure. In this paper, we suppose that β  is restricted to a finite 

number of values 1 … qβ β, ,  with respective prior probabilities 1 … qp p, ,  such that 
1

1q
aa

p
=

=∑ , i.e. 

( )a aP pβ β= = , see Soliman (2008). The use of discrete distribution with equal probabilities for the 

scale parameter β  resulted in a closed form expression for the posterior distribution. This cased an 

element of uncertainly, which is sometimes desirable in some cases. Furthermore, suppose that, 

conditional upon aβ β= , θ  has inverted gamma ( )a ac d,  with density 

 1( | ) exp 0 ( 0)
( )

a
a

c
ca a

a a a
a

d d c d
c

π θ β β θ θ
θ

− −  = = − , > , , > , Γ  
 (4.1) 

where ac  and ad  are chosen so as to reflect prior beliefs on θ  given that aβ β= . 

Based on (2.4), (3.1) and (4.1), our actual opinion about θ  is summarized by the conditional 

posterior distribution of θ  given aβ β=  which is given by Bayes theorem as 
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where 
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On applying the discrete version of Bayes theorem, the marginal posterior probability distribution of 

β  is 
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where aΨ  is as defined in (4.3). 

4.1 Estimation Based on Squared Error Loss Function 

Under squared error loss (SEL) function, the Bayes estimator for θ  is 
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and the Bayes estimator for β  is given by 

 
1

q

a aSE
a

β πβ
=

= .∑  (4.6) 

Similarly, the Bayes estimators for the SF and HRF at some y y=   under SEL are given, 

respectively, by 
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where 
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4.2 Asymmetric Loss Function 

The loss function ( )L ϑ ϑ,  provides a measure of the financial consequences arising from a wrong 

estimate ϑ  of the unknown quantity ϑ . Due to its good mathematical properties, not its applicability to 

represent a true loss structure, most of the Bayesian inference procedures have been employed using 

symmetric SEL function (Tribus and Szonyi (1989) and Leon, et al (1992)), 

 2( ) ( )L ϑ ϑ ζ ϑ ϑ, = − ,   (4.10) 

where ζ  is constant. 

Although the quadratic loss function in (4.10) is a reasonable choice for many estimation problems, 

there are several situations where it is not appropriate. For example, during the estimation of the average 

reliable working life of the components of a space shuttle or an aircraft, over-estimation is usually more 

serious than under-estimation of the same magnitude, Kamińska and Porosiński (2009). So that a loss 

function should represent the consequences of different errors which may arise from over- and 

under-estimations. To overcome this problem, asymmetric loss functions have been introduced such as 

linear-exponential (LINEX) loss function, introduced by Varian (1975), and general entropy loss function 

(GEL), introduced by Calabria and Pulcini (1996). Despite the popularity and flexibility of the LINEX 

loss function to deal with estimation of the location parameter, it seems to be not appropriate for 

estimation of the scale parameter and other quantities, Basu and Ebrahimi (1991), Parsian and Sanjari 

Faripour (1993) and Srivastava and Tanna (2007). 
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A suitable alternative to LINEX loss is the GEL given by: 

 ( ) log 1L
ν

ϑ ϑϑ ϑ ν
ϑ ϑ
   

, ∝ − − ,   
   

 

  (4.11) 

whose minimum occurs at ϑ ϑ= . 

This loss is a generalization of the entropy loss proposed by several authors where 1ν = , Dey, et al 

(1987) and Dey and Liu (1992). For positive values of ν , a positive error ( 0ϑ ϑ− > ) causes more 

serious error than a negative error. The Bayesian estimator GEϑ  of ϑ  under GEL is given by 

 ( ) 1
[ ]GE E

νν
ϑ ϑϑ

− /−= ,  (4.12) 

provided existence and finiteness of [ ]E ν
ϑ ϑ

− . It is clear that when 1ν = − , Bayesian estimator (4.12) 

coincides with the Bayesian estimator under the SEL function, whereas when 1ν =  this estimator 

coincides with the Bayesian estimator of the SF under the weighted SEL function, 

2( ) ( )L ϑ ϑ ϑ ϑ ϑ, = − /  . 

4.3 Estimation Based on General Entropy Loss Function 

It is shown above that under GEL (4.11) the Bayesian estimation of the unknown parameter/function 

can be calculated from Equation (4.12). Therefore, if in Equation (4.12) ϑ θ= , then the Bayesian 

estimator of the scale parameter θ  of Equation (2.4) under GEL is given by 
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Using Equations (4.2) and (4.4), Equation (4.13) becomes 
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Similarly put ϑ β= , then the Bayesian estimator of the acceleration factor β  under GEL is given 

by 
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Similarly, the Bayesian estimator of the SF and HRF at some y y=   under GEL are given, 

respectively, by 
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where ε  is as defined in (4.9). The value of y  has been taken to equal 0.3 in the simulation study. 

5. Simulation Study 

Due to the complicated expressions of the estimators, an analytical comparison of these estimators is 

impossible. Therefore, a Monte Carlo simulation study is carried out in order to calculate the MLEs, Bayes 

estimates (BEs), mean squared errors (MSEs), relative absolute biases (RABs) and 90%  approximate 

CIs of the model parameters, based on 1000r =  Monte Carlo simulations. 

The simulation study is performed according to the following steps 

1. Generate a random sample of size n  from uniform (0 1),  distribution and obtain the order 

statistics 1( )n n nU U: :, , .  

2. For a given value of the parameter θ  and a value of stress change time kτ , find 1n  such 

that  
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3. For given values of acceleration factor β  and censoring time Kτ , find 2n  such that  
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4. From steps 2 and 3, the ordered observations  
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are calculated as follows 
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5. The observations 1 21i ny i n n: , = , , +

    represent a type-I censored sample generated from 

the exponential distribution under PALT.  

6. For given values of k  and K , apply the progressive type-I censoring scheme to the 

observations generated in step 4 to obtain the observations given in (2.3), where 

1 1

k
i ii

n n R
=

= +∑  and 2 1

K
i ii k

n n R
= +

= +∑ .  

7. Based on the progressively type-I censored sample given is step 5, calculate θ̂  and β̂  

according to Equations (3.5). 

The MSE ˆ( )θ  and RAB(θ̂ ) based on r  different samples are calculated as follows  

 2

1 1

1 1ˆ ˆ ˆ ˆMSE( ) ( ) and RAB( ) |
r r

r rω ω
ω ω

θ θ θ θ θ θ
θ= =

= − = | − .∑ ∑  

8. Similarly, the MSE ˆ( )β  and RAB ˆ( )β  can be calculated as in step 7.  

9. The BEs under SEL (GEL) of θ , β , SF and HRF with their MSEs and RABs can be 

computed similarly from Equations (4.5)-(4.8) ((4.14)-(4.17)).  

Suppose that the progressive censoring is designed with three censoring times. The first two of them 

are occurred at use stress condition and the third one is occurred at accelerated stress condition. At the 
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second censoring time, the stress is changed from use to accelerated condition. The experiment terminates 

at the time point which corresponds to the third pre-specified censoring time. 

It has been taken into account that the calculations are performed on type-I censoring, 1 2 0R R= = , 

and progressive type-I censoring, 1 20 0R R≠ , ≠ , for the sake of comparison. 

Based on samples of sizes 25, 50 and 100 subject to progressive type-I censoring with two different 

censoring schemes (C.S.), Table 1 shows the MLEs with their MSEs and RABs. It shows also the lower 

and upper bounds of 90%  CIs for the unknown parameters in addition to their lengths and coverage 

probabilities (COVPs). Table 2 shows the BEs with their MSEs and RABs of the model parameters in 

addition to the SF and HRF based on SEL and GEL functions with 3 1 3ν = − , , . The MLEs and BEs 

shown in Tables 1 and 2 are the average estimates over 1000 different samples. 

The population parameter values used in the simulation study are 0 65θ = .  and 1 2β = . . The 

censoring time values are 1 0 1τ = . , 2 0 35τ = .  and 3τ =6.0. The parameter β  has assigned discrete 

distribution with ten values 1.05(0.02)1.23 with equal probabilities 0 1  1  10ap a= . , = , , . 

The MLE of the SF and HRF at some 0y >  can be computed by using the invariance property of 

MLEs. 

The following two points have been taken into account in the simulation procedure: 

 The IMSL subroutines for pseudo-random number generation have been used.  

 It has been numerically shown that the vector of parameters in the considered population 

satisfying the log-likelihood Equations (3.3)-(3.4) actually maximizes log-likelihood function 

(3.2). This is done by applying Theorem (7-9) on p. 152 of Apostol (1960).  
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Table 1. MLEs (CIs) of θ  and β  with their MSEs and RABs (lengths and estimated coverage probabilities 

(in )% ) for different sample sizes and censoring schemes. 

  
C.S. θ̂  MSE(θ̂ ) RAB(θ̂ ) CI(θ ) LCI(θ ) COVP(θ ) 

  β̂  MSE( β̂ ) RAB( β̂ ) CI( β ) LCI( β ) COVP( β ) 

25 R1=R2=1 0.9730 0.2074 0.2926 (-0.7706,2.1679) 2.9385 79.6 

  1.8972 1.0800 0.3416 (-1.8218,4.5026) 6.3245 82.4 

 R1=R2=0 0.6986 0.0592 0.2447 (-0.3879,2.3340) 2.7219 91.6 

  1.3404 0.3661 0.3320 (-1.0614,4.8559) 5.9173 83.1 

50 R1=R2=1 0.9551 0.1263 0.2980 (-0.5128,1.9007) 2.4136 80.0 

  1.7493 0.4973 0.2920 (-0.9396,3.4295) 4.3691 84.6 

 R1=R2=0 0.6939 0.0350 0.1788 (0.1349,1.7754) 1.6405 93.5 

  1.2449 0.1575 0.2559 (0.0147,3.4840) 3.4693 83.3 

100 R1=R2=1 0.9267 0.0892 0.2889 (0.1463,1.1969) 1.0505 86.9 

  1.6920 0.3321 0.2726 (0.2901,2.1797) 1.8896 85.6 

 R1=R2=0 0.6716 0.0126 0.1225 (0.5893,1.2641) 0.6748 96.4 

  1.2349 0.0696 0.1741 (0.9684,2.4155) 1.4471 89.4 

 

C.S. ≡  Censoring Schemes & LCI ≡  length of CI. 
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Table 2. BEs of θ , β , SF and HRF with their MSEs and RABs under SEL and GEL functions for different 

sample sizes and censoring schemes. 

 

n  C.S. E.M. θ  MSE(θ ) RAB(θ ) S  MSE( )S  RAB( S ) 

   β  MSE( β ) RAB( β ) H  MSE( H ) RAB( H ) 

25 R1=R2=1 Bayes(SE) 0.4702 0.0373 0.4149 0.5183 0.0150 0.2284 

   1.1650 0.0012 0.0300 2.2227 0.5772 0.2939 

  GE ( 3ν = − ) 0.5252 0.0200 0.2613 0.5536 0.0094 0.1455 

   1.1659 0.0012 0.0292 2.0560 0.3391 0.2416 

  GE ( 1ν = ) 0.4599 0.0209 0.4461 0.5133 0.0102 0.2409 

   1.1625 0.0014 0.0322 2.1740 0.3088 0.2085 

  GE ( 3ν = ) 0.4901 0.0292 0.3473 0.5391 0.0100 0.2768 

   1.1583 0.0017 0.0359 1.9493 0.2707 0.2023 

 R1=R2=0 Bayes(SE) 0.6104 0.0075 0.1232 0.6018 0.0022 0.0660 

   1.1638 0.0013 0.0311 1.7114 0.0737 0.1224 

  GE ( 3ν = − ) 0.6773 0.0085 0.1038 0.6295 0.0019 0.0466 

   1.1648 0.0012 0.0301 1.6085 0.0753 0.1107 

  GE ( 1ν = ) 0.5934 0.0089 0.1129 0.5973 0.0025 0.0722 

   1.1612 0.0015 0.0333 1.6633 0.0466 0.1097 

  GE ( 3ν = ) 0.6309 0.0067 0.1104 0.6197 0.0035 0.0723 

   1.1566 0.0019 0.0374 1.5034 0.0411 0.1122 

50 R1=R2=1 Bayes(SE) 0.4960 0.0267 0.3270 0.5411 0.0091 0.1702 

   1.1824 0.0003 0.0149 2.0600 0.3189 0.2465 

  GE ( 3ν = − ) 0.5004 0.0249 0.3129 0.5430 0.0086 0.1652 

   1.1843 0.0002 0.0132 2.0815 0.3375 0.2541 

  GE ( 1ν = ) 0.4909 0.0282 0.3405 0.5391 0.0095 0.1748 

   1.1805 0.0004 0.0165 2.0391 0.2970 0.2388 

  GE ( 3ν = ) 0.4850 0.0293 0.3526 0.5368 0.0097 0.1785 

   1.1788 0.0005 0.0180 2.0180 0.2690 0.2305 
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 R1=R2=0 Bayes(SE) 0.5909 0.0066 0.1239 0.5974 0.0019 0.0629 

   1.1850 0.0002 0.0126 1.7260 0.0618 0.1126 

  GE ( 3ν = − ) 0.5984 0.0061 0.1151 0.5994 0.0018 0.0602 

   1.1871 0.0002 0.0109 1.7429 0.0698 0.1189 

  GE ( 1ν = ) 0.5845 0.0073 0.1329 0.5956 0.0020 0.0654 

   1.1832 0.0003 0.0141 1.7073 0.0548 0.1060 

  GE ( 3ν = ) 0.5778 0.0084 0.1457 0.5935 0.0023 0.0698 

   1.1813 0.0003 0.0158 1.6914 0.0324 0.1027 

100 R1=R2=1 Bayes(SE) 0.4252 0.0515 0.5368 0.4912 0.0089 0.1664 

   1.2101 0.0001 0.0083 2.3790 0.2319 0.2010 

  GE ( 3ν = − ) 0.4299 0.0493 0.5189 0.4944 0.0079 0.1575 

   1.2106 0.0001 0.0088 2.3838 0.2376 0.2424 

  GE ( 1ν = ) 0.4224 0.0528 0.5471 0.4895 0.0085 0.1608 

   1.2095 0.0001 0.0078 2.3631 0.1951 0.2167 

  GE ( 3ν = ) 0.4205 0.0537 0.5544 0.4886 0.0087 0.1633 

   1.2087 0.0001 0.0073 2.3419 0.1692 0.2113 

 R1=R2=0 Bayes(SE) 0.5124 0.0196 0.2719 0.5546 0.0017 0.0525 

   0.1.2122 0.0001 0.0100 1.9704 0.0570 0.1118 

  GE ( 3ν = − ) 0.5173 0.0186 0.2616 0.5566 0.0017 0.0539 

   1.2130 0.0001 0.0107 1.9800 0.0547 0.0918 

  GE ( 1ν = ) 0.5088 0.0206 0.2807 0.5533 0.0019 0.0632 

   1.2116 0.0001 0.0096 1.9568 0.0354 0.0095 

  GE ( 3ν = ) 0.5053 0.0217 0.2906 0.5518 0.0021 0.0596 

   1.2110 0.0001 0.0091 1.9440 0.0223 0.0091 

 
C.S. ≡  Censoring Schemes. &  E.M.≡  Estimation Method.  
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6. Conclusion 

Censoring is common phenomenon in many life and fatigue tests. It has been shown by Viveros and 

Balakrishnan (1994) that the inference is practical when the sample data are subjected to a progressively 

censored experimental scheme. It has been discussed in this paper some results on statistical inference 

when the data are gathered according to step PALTs and collected under progressive type-I censoring 

scheme. We have obtained MLEs and BEs, in closed forms, for the two unknown parameters as well as the 

SF and HRF considering an exponential life model. The results are obtained under both symmetric and 

asymmetric loss functions. A simulation study has been conducted to examine the performance of the 

MLEs as well as the BEs under different sample sizes. From the simulation results, listed in Table 1, we 

observe the following: 

 

1. For fixed values of n , the MSEs and RABs of the MLEs that correspond to 1 2 1R R= =  

(progressive type-I censoring) are greater than those correspond to 1 2 0R R= =  (type-I 

censoring).  

2. The LCI(θ ) and LCI( β ) (the COVP(θ ) and COVP(β )) that correspond to 1 2 1R R= =  are 

greater (less) than those correspond to 1 2 0R R= = .  

3. For fixed values of 1R  and 2R , the MSEs, RABs and LCIs (COVPs) decrease (increase) as n  

increases.  

From the simulation results, listed in Table 2, we observe the following:  

4. For fixed values of sample size n  and censoring schemes, the MSEs and RABs of the BEs of 

θ β,  and SF ( )HRF  increase (decrease) as ν  increases.  

5. For fixed values of n  the MSEs and RABs of the estimates under progressive type-I censoring 

1 2 1R R= =  are greater than those under type-I censoring 1 2 0R R= = .  

6. For fixed values of censoring scheme, all the MSEs and RABs decrease as n  increases.  

7. Practically, the negative values in lower bounds of the CIs should be taken equal zero since the 

two parameters are positive. 

It can be observed from Table 1 and Table 2 that the BEs are better than MLEs for small sample sizes 
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and become the best for large sample sizes. 
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