

On Various Properties of δ -Compactness in Bitopological Spaces

Sanjoy Kumar Biswas

Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh. E-mail Address: sanjoy.biswas22@yahoo.com

Nasima Akhter

Department of Mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh. E-mail Address: nasima.math.ru@gmail.com

Abstract

By introducing the notion of δ -compact Anjali Srivastava and Sandhya Gupta in paper (A. Srivastava and S. Gupta 2005) obtained the generalization of various results of Park in a paper (Herrington and Long 1975 and Park 1988). In this paper, we introduce the concept on various properties of δ -compactness in bitopological spaces.

Keywords: H-closed spaces, net, ultranet, w-limit point, w-closure, δ -compact bitopological spaces, bitopological spaces, θ -compactness.

1. Introduction

Jong Suh Park in the paper "H-closed spaces and W-Lindelof spaces "has got various interesting results related with H-closed spaces. Moreover Park has introduced the concept of W-Lindelof spaces which is a generalization of Lindelof spaces. By using the notions of σ -continuous maps, w-closure, w-limit point etc. Park has proved various results concerned with these concepts.

Anjali Srivastava and Sandhya Gupta in the paper "On various properties of δ -compact spaces" have introduced the concept of δ -compact spaces and have got many theorems giving a generalization of Park's theorems by using the tools of δ -continuous maps, *w**-closure, δ -convergence of nets and δ - cluster points of nets etc.

In this paper we have introduced the concept of δ -compactness in bitopological spaces and have got

many theorems giving a generalization of Park's theorem by using the tools of δ -continuous maps, *w**-closure, δ -convergence of nets and δ - cluster points of nets etc. in bitopological spaces.

In section 2 of this paper we obtain a characterization of δ -Hausdorff bitopological spaces and discuss various properties of δ -Hausdorff bitopological spaces which compare (i, j)-Hausdorff spaces and Hausdorff spaces. Further the notion of δ -compactness in bitopological spaces is introduced and it is shown that δ -compactness in bitopological spaces is preserved by δ -continuous surjections, arbitrary products and *w**-closed sets in bitopological spaces, which is a generalization of A. Srivastava and S. Gupta (2005).

In section 3 of this paper we study θ -compactness in bitopological spaces a generalization of quasi-H-closed sets and its applications to some forms of continuity using θ -open and δ -open sets in bitopological spaces. Among other results, it is shown that a weakly θ -retract of a Hausdorff spaces X is a δ -closed subset of X in bitopological spaces, which is a generalization of some results of Mohammad Saleh (2004).

2. δ -Compactness in Bitopological Spaces

The section beings with the following of δ -compactness in bitopological spaces.

Definition 2.1: Let (X, T_1, T_2) be a bitopological space. A subset A of X is called a (i, j)-H-closed set ((i, j)-H-set) in X (J. Vermeer, 1985) if every pairwise open cover G of A then \exists a finite subfamily $\{U_i\} \subset G$, i = 1, 2, ..., n such that $A \subset \bigcup_{i=1}^n (jCl(U_i))$.

Definition 2.2: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called (i, j)- δ -compact if for each pairwise open

cover $\{U_n\}$ of X there are finitely many n_k such that $X = \bigcup_{k=1}^{\infty} iInt(jCl(U_{nk}))$ where $i \neq j, i, j = 1, 2$.

Obviously (i, j)- δ -compact space is (i, j)-H-closed. But the converse is not true.

Example 2.1: Let $X = \Re$,

 T_1 = The usual topology on \Re , T_2 = The discrete topology on \Re .

Let $A = [m, m+r | m, r \in \mathbb{Z}, r > 1].$

Then clearly A is (i, j)-H-closed. Now consider

C = { $(n-1, n)|n \in \mathbb{Z}$ } \cup {{s}| $s \in \mathbb{Z}$ } \cup {the unions of these subsets}. Then C is a pairwise open cover of A in (X, T_1, T_2) .

m + 1, {{m} \cup {m + 1}}. Therefore,

 T_2 -Cl(m+i-1, m+i) = (m+i-1, m+i), i= 1, 2, ..., r-1 and

 T_1 -Cl{m+i} = {m+i}, i= 1, 2, ..., r-1.

Clearly, these two closures together cover A.

Now, T_1 -Int $(T_2$ -Cl(m+i-1, m+i))=(m+i-1, m+i), i=1, 2, ..., r-1 and

 T_2 -Int $(T_1$ -Cl $(\{m+i\})=\phi$, i=1, 2, ..., r-1. Therefore, the two classes of sets together do not cover *A*. Hence *A* is not (i, j)- δ -compact.

Definition 2.3: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space. A net (x_n) in X is said to be (i, j)- δ -accumulate

to a point x of X denoted by $x_n \overset{\delta}{\infty} x$ if for any *i*-neighbourhood U of x and n there is an $n_1 \ge n$ such that $x_{n_1} \in i \operatorname{Int}(j \operatorname{Cl}(U))$ where $i \ne j, i, j = 1, 2$.

Definition 2.4: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space. A net (x_n) in X is said to be (i, j)- δ -converge to a point x of X denoted by $x_n \xrightarrow{\delta} x$ if for each i-neighbourhood U of x there is an $n_1 \ge n$ such that $x_{n_1} \in i \text{Int}(j \text{Cl}(U))$ where $i \ne j, i, j = 1, 2$.

Definition 2.5: A net (x_n) on a set *X* is called universal, or an ultranet (From wikipedia) if for every subset *A* of *X*, either (x_n) is eventually in *A* or (x_n) is eventually in *X*–*A*. (By eventually in *A* we mean, $\exists N$ such that for all $n \ge N$, $x_n \in A$).

Lemma 2.1: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space. If a ultranet (x_n) of X(i, j)- δ -accumulate to a point x of X then (x_n) is (i, j)- δ -converge to x.

Note: If $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a bitopological space, then for any $A \subset X$, we define

- (1) $\operatorname{Cl}(A) = \bigcap \{F_1 \cup F_2 \text{ where } A \subset F_1 \cup F_2 \text{ and } F_1, F_2 \text{ are respectively } \mathcal{T}_1 \text{ and } \mathcal{T}_2 \text{ closed}\}, \text{ then } \operatorname{Cl}(A)$ is called a pairwise closure of *A*.
- (2) We also define a pairwise closure in abitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ by

 $Cl(A) = \{x \in X: A \cap (U \cup V) \neq \phi, \text{ where } A \subset X \text{ and } x \in U \in \mathcal{T}_1, x \in V \in \mathcal{T}_2\}.$

Note that the closure of a subset A w.r.to T_1 and w.r.to T_2 is a subset of the pairwise closure of A.

Now we show that the above two definitions are equivalent.

Proof:Let $x \notin Cl(A)$ in (2). This implies that $A \cap (U \cup V) = \phi \Rightarrow A \cap U = \phi$ and $A \cap V = \phi$. Let U_0 is the union of all \mathcal{T}_1 neighborhood U of x and V_0 is the union of all \mathcal{T}_2 neighborhood V of x. Then $A \cap U_0 = \phi$ and $A \cap V_0 = \phi$. Therefore $A \subseteq (U_0)^c$ and $A \subseteq (V_0)^c$. Hence \mathcal{T}_1 -Cl $(A) \subseteq (U_0)^c$ and \mathcal{T}_2 -Cl $(A) \subseteq (V_0)^c$ where $(U_0)^c$ is closed in \mathcal{T}_1 and $(V_0)^c$ is closed in \mathcal{T}_2 . Therefore $x \notin (U_0)^c \cup (V_0)^c \Rightarrow x \notin Cl(A)$ in (1).

Conversely, let $x \notin Cl(A)$ in (1) then there exist \mathcal{T}_1 -closed set F_1 and \mathcal{T}_2 -closed set F_2 such that $x \notin F_1$ $\cup F_2$ this implies that $x \notin F_1$ and $x \notin F_2$. Therefore $x \in (F_1)^c$ and $x \in (F_2)^c$ implies $x \in (F_1)^c \cup (F_2)^c$ where $(F_1)^c$ is \mathcal{T}_1 -open and $(F_2)^c$ is \mathcal{T}_2 -open and $A \cap ((F_1)^c \cup (F_2)^c) = \phi$. Hence $x \notin Cl(A)$ in (2).

Definition 2.6: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space. For a subset A of X the (i, j)-weak closure of A denoted by (i, j)-Cl_w^{*}(A) is defined by the set (i, j)-Cl_w^{*} $(A) = \{x \in X : A \cap i \text{Int}(j\text{Cl}(U)) \neq \phi \text{ for all } i\text{-open neighborhood } U \text{ of } x\}$ where $i \neq j, i, j = 1, 2$.

Example 2.2: Consider the topologies on $X = \{a, b, c\}$ be $\mathcal{T}_1 = \{X, \phi, \{a\}, \{a, c\}\}$ and $\mathcal{T}_2 = \{X, \phi, \{b\}, \{a, b\}\}$. Let $a \in X$ and $A = \{b, c\}$ be a subset of X, then A is (1,2)-weak closure of A, since for all $\mathcal{T}_1 \mathcal{T}_2$ -open neighborhood U of a, we have $A \cap \mathcal{T}_1$ -Int $(\mathcal{T}_2$ -Cl(U)) \neq \phi.

Note: A subset *A* of *X* is called (i, j)-regular open if $A = i \operatorname{Int}(j \operatorname{Cl}(A))$ and *X* is called (i, j)-semi-regular space if it has a base consisting of (i, j)-regular open sets (Biswas, S.K. and Akhter, N. 2015).

Following lemma establishes the similar behaviour of a pairwise closure and (i, j)-weak closure of a set in terms of the (i, j)- δ -convergence of nets.

Lemma 2.2: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space and $A \subseteq X$. Then $x \in (i, j)$ -Cl_w^{*}(A) iff there is a net (x_n) of points of A, (i, j)- δ -converge to $x \in X$.

Proof: Let $x \in (i, j)$ -Cl_w^{*}(A). Then $A \cap i$ Int(jCl $(U_n)) \neq \phi$ for all *i*-neighborhoods U_n of x in X. Consider the family η_x of all *i*-neighborhood of x with the reverse order inclusion and define a net in X as follows:

S: $\eta_x \rightarrow X$ by

 $S(U_n) = x_n$ where $x_n \in A \cap i \operatorname{Int}(j \operatorname{Cl}(U_n))$ then (x_n) is a net of point of A and $x_n \xrightarrow{\circ} x$.

Conversely, assume that $x_n \xrightarrow{\delta} x$. For a *i*- neighborhoods U of x, $\exists n_1$ such that $x_n \in i \operatorname{Int}(j \operatorname{Cl}(U)) \quad \forall n \ge n_1$. Since $x_n \in A \forall n$, we have $A \cap i \operatorname{Int}(j \operatorname{Cl}(U)) \neq \phi$. Thus $x \in (i, j) - \operatorname{Cl}_w^*(A)$.

Definition 2.7: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space and $A \subseteq X$. Then *A* is called (i, j)-w^{*}-closed if A = (i, j)-Cl_w^{*}(*A*).

Definition 2.8: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is called (i, j)- δ -Hausdorffif for any two distinict points x and y of X there are i-open neighborhood U of x and j-open neighbourhood V of y such that iInt $(jCl(U)) \cap j$ Int $(iCl(V)) = \phi$ where $i \neq j, i, j = 1, 2$.

Equivalently, X is said to be (i, j)- δ -Hausdorffif forevery $x \neq y \in X$, $\exists (i, j)$ - δ -open set U_x and (j, i)- δ -open set V_y such that $U_x \cap V_y = \phi$.

Definition 2.9: (Noiri and Popa 2007) A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be pairwise Hausdorff if for every $x, y \in X, x \neq y \exists U \in \mathcal{T}_1, V \in \mathcal{T}_2$ such that $x \in U, y \in V$ and $U \cap V = \phi$.

Note that a (i, j)- δ -Hausdorff space is pairwise Hausdorff but the following example shows that X is pairwise Hausdorff but not (i, j)- δ -Hausdorff.

Example 2.3: Consider the following bitopologies on $X = \{a, b, c\}$:

 $\mathcal{T}_1 = \{X, \varphi, \{a\}, \{a, c\}\} \text{ and } \mathcal{T}_2 = \{X, \varphi, \{a, b\}, \{b, c\}, \{b\}, \{c\}\}.$

Then X is pairwise Hausdorff. But X is not (1,2)- δ -Hausdorff since for $b, c \in X$, if we consider \mathcal{T}_1 -open set $U = \{a, c\}$ and \mathcal{T}_2 -open set $V = \{a, b\}$ we have \mathcal{T}_1 -Int(\mathcal{T}_2 -Cl(U)) = $\{a\}$ and \mathcal{T}_2 -Int(\mathcal{T}_1 -Cl(V)) = X i.e, \mathcal{T}_1 -Int(\mathcal{T}_2 -Cl(U)) $\cap \mathcal{T}_2$ -Int(\mathcal{T}_1 -Cl(V)) $\neq \phi$. Similarly, for $a, b \in X$ or $c, a \in X$ we have X is not (1,2)- δ -Hausdorff. Hence X is not (i, j)- δ -Hausdorff.

Following theorem gives a characterization of (i, j)- δ -Hausdorff spaces in terms of diagonal of *X*. **Theorem 2.1:** Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space. Then the following statement are equivalent:

- (i) X is (i, j)- δ -Hausdorff
- (ii) Every net in X(i, j)- δ -converges to atmost point of X.
- (iii) The diagonal $\Delta = \{(x,x): x \in X\}$ is a (i, j)-w*-closed set of $X \times X$.

Proof: (i) \Longrightarrow (ii). Assume that a net (x_n) in X(i, j)- δ -converges to distinct points x and y of X. Since X is (i, j)- δ -Hausdorff there are i-open neighbourhood U of x and j-open neighbourhood V of y such that $i \operatorname{Int}(j\operatorname{Cl}(U)) \cap j\operatorname{Int}(i\operatorname{Cl}(V)) = \phi$. Since $x_n \xrightarrow{\delta} x$, $\exists n_1$ such that $x_n \in i\operatorname{Int}(j\operatorname{Cl}(U)) \quad \forall n \ge n_1$. Since $x_n \xrightarrow{\delta} y$, $\exists n_2$ such that $x_n \in j\operatorname{Int}(i\operatorname{Cl}(V)) \quad \forall n \ge n_2$.

Choose $m \ge n_1$ and $m \ge n_2$. Then $x_m \in i \operatorname{Int}(i \operatorname{Cl}(U)) \cap i \operatorname{Int}(i \operatorname{Cl}(V))$. This is a contradiction. Thus x = y.

(ii) \Rightarrow (iii). Let $(x, y) \in (i, j)$ -Cl_w^{*}(Δ). Then there is a net (x_n) in X such that $(x_n, x_n) \xrightarrow{\delta} (x, y)$. Since $x_n \xrightarrow{\delta} x$ and $x_n \xrightarrow{\delta} y$ by (ii) x = y. Thus $(x, y) \in \Delta$.

(iii) \Rightarrow (i). Let $x, y \in X$ with $x \neq y$. Then $(x, y) \in \Delta = (i, j)$ -Cl_w^{*}(Δ). Hence there is a *i*-neighborhood W of (x, y) such that $\Delta \cap i$ Int(jCl(W)) = ϕ . Choose *i*-open set U and *j*-open set V of X with $x \in U, y \in V$ and $U \times V \subset W$. Then iInt(jCl(U)) $\cap j$ Int(iCl(V)) = ϕ .

Lemma 2.3: Let X be (i, j)- δ -compact space. Then for each net (x_n) in X there is an $x \in X$ such that $x_n \overset{\delta}{\infty} x_n$.

Proof: Suppose that (x_n) has no (i, j)- δ -limit point in X. Then (x_n) is not (i, j)- δ -accumulate to a point x in X. For each $x \in X$ there is a *i*-neighborhood U_x of x and n_x such that $x_n \notin i \operatorname{Int}(j\operatorname{Cl}(U_x)) \quad \forall n \ge n_x$. Then $\{U_x : x \in X\}$ is a pairwise open cover of X. Since X is (i, j)- δ -compact, there are finitely many x_k such that $X = \bigcup_{k=1}^n i\operatorname{Int}(j\operatorname{Cl}(U_{x_k}))$. Choose m such that $m \ge n_x \; k \; \forall \; k = 1, 2, ..., n$. Conclude from above $x_m \notin \bigcup_{k=1}^n i\operatorname{Int}(j\operatorname{Cl}(U_xk)) \; \forall \; k = 1, 2, ..., n$. This contradiction shows that (x_n) has necessarily a (i, j)- δ -cluster point in X.

Theorem 2.2: If abitopological space X is (i, j)- δ -compact then every net in X has a (i, j)- δ -convergent subnet.

Proof: Let (x_n) be a net in X. Since every net has a ultra subnet, (x_n) has a ultra subnet (x_{n_k}) . Then by

above lemma 2.3 there is an $x \in X$ such that $x_{n_k} \stackrel{\delta}{\propto} x$. Therefore we have $x_{n_k} \stackrel{\delta}{\rightarrow} x$.

Theorem 2.3: Let X be a (i, j)- δ -compact space. If A is (i, j)-Cl_w^{*}-closed subset of X, then A is (i, j)- δ -compact.

Proof: Let (x_n) be a net in A. Then (x_n) is a net in X. Since X is (i, j)- δ -compact (x_n) has a (i, j)- δ -convergent subnet. Let $x_n \xrightarrow{\delta} x$. Since $x \in (i, j)$ - $\operatorname{Cl}_w^*(A)$ and A is a (i, j)- Cl_w^* -closed we conclude that x

 $\in A$. It shows that A is (i, j)- δ -compact.

Theorem 2.4: Let X be a (i, j)- δ -Hausdorff space. Then every (i, j)- δ -compact subset of X is (i, j)- w^* -closed.

Proof: Let $x \in (i, j)$ -Cl_w^{*}(A). Then there is a net (x_n) in A such that $x_n \xrightarrow{\delta} x$. Then x is a (i, j)- δ -limit point of (x_n) . Since A is (i, j)- δ -compact, $x \in A$. Hence (i, j)-Cl_w^{*}(A) = A i.e, A is a (i, j)-w^{*}-closed set of X.

Definition 2.10: A function $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- δ -continuous at a point x if for each σ_i -neighborhood U of f(x) there are \mathcal{T}_i -neighborhood V of x such that $f(i\operatorname{Int}(j\operatorname{Cl}(V))) \subset i\operatorname{Int}(j\operatorname{Cl}(U))$ where $i \neq j, i, j = 1, 2$. If f is (i, j)- δ -continuous at every $x \in X$, then f is called (i, j)- δ -continuous.

Definition 2.11: (Khedr and AL-Areefi, 1992) Amapping $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be pairwise continuous if inverse image of every σ_1 -open (resp. σ_2 -open) set in Y is \mathcal{T}_1 -open (resp. \mathcal{T}_2 -open) in X.

Note that the concepts of pairwise continuous maps and (i, j)- δ -continuous maps are different.

Example 2.4: Consider the topologies on $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ respectively by

 $\mathcal{T}_1 = \{X, \ \phi, \ \{a, b\}, \{a\}\}, \ \mathcal{T}_2 = \{X, \ \phi, \ \{b\}, \ \{b, c\}\} \text{ and } \sigma_1 = \{Y, \ \phi, \ \{p\}, \ \{p, r\}\}, \ \sigma_2 = \{Y, \ \phi, \ \{q\}\}.$

Let, $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map defined as f(a) = p, f(b) = q, f(c) = r. Then f is (1, 2)- δ -continuous since if $a \in X$ and σ_1 -neighborhood $U = \{p, r\}$ we have \mathcal{T}_1 -neighborhood $V = \{a\}$ such that $f(\mathcal{T}_1$ -Int $(\mathcal{T}_2$ -Cl(V))) $\subset \sigma_1$ -Int $(\sigma_2$ -Cl(U)). But it is not a pairwise continuous maps since inverse image of σ_1 -open set $f^1(p, r) = \{a, c\}$ in Y which is not \mathcal{T}_1 -open in X.

Following theorem gives a characterization of (i, j)- δ -continuous maps between two spaces.

Theorem 2.5: A mapping $f(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)- δ -continuous at $x \in X$ iff for any net (x_n) in X satisfying $x_n \xrightarrow{\delta} x$, the net $f((x_n)) \xrightarrow{\delta} f(x)$ in Y.

Proof: Given any σ_i -neighborhood U of f(x), there is a \mathcal{T}_i -neighborhood V of x such that $f(\mathcal{T}_i\text{-Int}(\mathcal{T}_j\text{-Cl}(V))) \subset \sigma_i\text{-Int}(\sigma_j\text{-Cl}(U))$ where $i \neq j, i, j = 1, 2$.

Also there is an n_1 such that $x_n \in i \operatorname{Int}(j \operatorname{Cl}(V))$ for all $n \ge n_1$. Since $f(x_n) \in f(i \operatorname{Int}(j \operatorname{Cl}(V))) \subset i \operatorname{Int}(j \operatorname{Cl}(U))$

for all $n \ge n_1$, we have $f((x_n)) \xrightarrow{\delta} f(x)$.

Conversely, assume that f is not (i, j)- δ -continuous at x. Then there is a σ_i -neighborhood U of f(x)such that $f(\mathcal{T}_i\text{-Int}(\mathcal{T}_j\text{-Cl}(V))) \not\subset \sigma_i\text{-Int}(\sigma_j\text{-Cl}(U))$ where $i \neq j, i, j = 1, 2$ for all \mathcal{T}_i -neighborhood V of x. Let (V_n) be the family of \mathcal{T}_i -neighborhoods of x with the reverse inclusion order. For each n, since $f(i\text{Int}(j\text{Cl}(V_n))) \not\subset$ iInt(jCl(U)), there is an $x_n \in i\text{Int}(j\text{Cl}(V_n))$ such that $f(x_n) \notin i\text{Int}(j\text{Cl}(U))$. Then the net (x_n) in X (i, j)- δ -converges to x but the net $f(x_n)$ in Y does not (i, j)- δ -converges to f(x). Thus we have a contradiction. Hence f is (i, j)- δ -continuous at x.

Definition 2.12: A mapping $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to have (i, j)-w^{*}-closed graph if its graph $G(f) = \{x, f(x) : x \in X\}$ is (i, j)-w^{*}-closed subset of $X \times Y$.

Theorem 2.6: A mapping $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has a (i, j)-w^{*}-closed graph iff for any net (x_n) in $X, x_n \xrightarrow{\delta} x \in X$ and $f(x_n) \xrightarrow{\delta} y \in Y$ implies y = f(x).

Proof: Assume that $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has a (i, j)-w^{*}-closed graph. Since $(x_n, f(x_n))$ is a net in

G(f) and $(x_n, f(x_n)) \xrightarrow{\delta} (x, y)$, we have $(x, y) \in (i, j)$ - $\operatorname{Cl}_w^*(G(f)) = G(f)$. Thus y = f(x).

Conversely, assume that $(x, y) \in (i, j)$ -Cl_w^{*}(G(f)). Then there is a net (x_n) in X such that $(x_n, f(x_n)) \rightarrow (x, y)$. Since $x_n \xrightarrow{\delta} x$ and $f(x_n) \xrightarrow{\delta} f(x)$, y = f(x). Thus $(x, y) \in G(f)$. Hence G(f) is (i, j)-w^{*}-closed.

Theorem 2.7: Let (Y, σ_1, σ_2) be a (i, j)- δ -Hausdorff space. Then every (i, j)- δ -continuous mapping $f:(X, \mathcal{T}_1, \mathcal{T}_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ has a (i, j)-w^{*}-closed graph.

Proof: Let $(x, y) \in (i, j)$ -Cl_w^{*}(G(f)). Then there is a net (x_n) in X such that $(x_n, f(x_n)) \xrightarrow{\delta} (x, y)$. Then $x_n \xrightarrow{\delta} x$ and $f(x_n) \xrightarrow{\delta} y$. Since f is (i, j)- δ -continuous at $x, f(x_n) \xrightarrow{\delta} f(x)$.Since Y is (i, j)- δ -Hausdorff, y = f(x). This implies $(x, y) \in G(f)$. Hence G(f) is (i, j)-w^{*}-closed.

Theorem 2.8:Let (Y, σ_1, σ_2) be a (i, j)- δ -compact space. If amapping $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has a (i, j)- w^* -closed graph then f is (i, j)- δ -continuous.

Proof: Let (x_n) be a net in X and $x_n \xrightarrow{\delta} x$. Since Y is (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ in Y is has a (i, j)- δ -compact the net $(f(x_n))$ - δ -compact the net (f(x_n))- δ -compact the net $(f(x_n))$ - δ -compact the net (f(x_n))- δ -compact the net (f(x_n))- δ -compact the net $(f(x_n))$ - δ -compact the net (f(x_n))- δ -compact the

j)- δ -convergent subnet by Theorem 2.2. Let $f(x_n) \xrightarrow{\delta} y \in Y$. Since $(x_n, f(x_n)) \xrightarrow{\delta} (x, y), (x, y) \in (i, j)$ -Cl_w^{*}(*G*(*f*)) = *G*(*f*). Thus y = f(x) and so $f(x_n) \xrightarrow{\delta} f(x)$. This means that *f* is (i, j)- δ -continuous at *x*.

Theorem 2.9: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a (i, j)- δ -compact space and (Y, σ_1, σ_2) a bitopological space. If $f(X, \sigma_1, \sigma_2)$

 $\mathcal{T}_1, \mathcal{T}_2 \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)- δ -continuous surjection, then Y is a (i, j)- δ -compact.

Proof: Let (y_n) be a net in Y. For each n, there is an $x_n \in X$ such that $y_n = f(x_n)$. Since X is (i, j)- δ -compact, there is a subnet (x_{n_k}) of (x_n) and an $x \in X$ such that $x_{n_k} \xrightarrow{\delta} x$. Since f is (i, j)- δ -continuous at $x, f(x_{n_k}) \xrightarrow{\delta} f(x)$. Thus Y is (i, j)- δ -compact.

3. Hausdorffness and Weak Forms of Compactness in Bitopological Spaces

Definition 3.1: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be (i, j)- θ -Hausdorff if for every $x \neq y \in X$,

 $\exists (i, j) \cdot \theta$ -open set U_x and $(j, i) \cdot \theta$ -open set V_y such that $U_x \cap V_y = \phi$.

Definition 3.2: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be pairwise Urysohn (Bose and Sinha

1982) if for each distinct points x, y, $\exists i$ -open set U, j-open set V such that $x \in U$, $y \in V$ and $jCl(U) \cap iCl(V) = \phi$ for $i \neq j, i, j, k=1, 2$.

It is clear that every (i, j)- θ -Hausdorff space is pairwise Urysohn but a pairwise Urysohn space need not be (i, j)- θ -Hausdorff (M. Saleh, 2003).

Lemma 3.1: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is (i, j)-R-Hausdorff if for every $x \neq y \in X$, $\exists (i, j) \in X$.

j)-regular open set U_x and (j, i)-regular open set V_y such that $U_x \cap V_y = \phi$.

By a (i, j)-weak θ -restriction we mean a (i, j)- weak θ -continuous function $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow A$ where A

 \subset X and f|A is the identity function on A. In this case A is said to be a (i, j)- weak θ -restriction of X. The next theorem is an improvement of Theorem 3.3 of (M. Saleh 2004).

Definition 3.3: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space and $A \subset X$. The set of all (i, j)- δ -adherent point

of A is called the (i, j)- δ -closure of A, denoted by (i, j)- δ -Cl(A). A subset A of X is called (i, j)- δ -closed iff A = (i, j)- δ -Cl(A). The complement of (i, j)- δ -closed set is called (i, j)- δ -open.

Theorem 3.1: Let $A \subset X$ and $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow A$ be a (i, j)- weak θ -restriction of X onto A. If X(i, j)-R-Hausdorff, then A is an (i, j)- δ -closed subset of X.

Proof: Suppose not, then there exists a point $x \in (i, j)$ - δ -Cl(A). Since f is a (i, j)-weak θ -restriction, we have $f(x) \neq x$. Since X is (i, j)-R-Hausdorff, there exist $\exists (i, j)$ -regular open set U and(j, i)-regular open set V of x and f(x) respectively such that $U \cap V = \phi$. Let W be any open set in X containing x. Then U $\cap i$ Int(jCl(W)) is a (i, j)-regular open set containing x and hence iInt(jCl(U)) $\cap i$ Int(jCl(W)) $\cap A \neq \phi$, since $x \in (i, j)$ - δ -Cl(A). Therefore, \exists a point $y \in i$ Int(jCl(U)) $\cap i$ Int(jCl(W)) $\cap A$. Since $y \in A$, $f(y) = y \in$ iInt(jCl(U)) and hence $f(y) \in j$ Cl(V). This shows that f(iInt(jCl(W))) is not contained in jCl(V). This contradicts the hypothesis that f is a (i, j)-weak θ -continuous. Thus A is a (i, j)- δ -closed as claimed.

Definition 3.4: A function $f(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-weak θ -continuous at $x \in X$ if given any σ_i -open set U in Y containing f(x), \exists a \mathcal{T}_i -open set V in X containing x such that $f(i\operatorname{Int}(j\operatorname{Cl}(U))) \subset j\operatorname{Cl}(V)$ where $i \neq j$, i, j = 1, 2. If this condition is satisfied at each point $x \in X$, then f is said to be (i, j)-weak θ -continuous (briefly, (i, j)-w. θ .c).

Theorem 3.2: Let f, g be (i, j)-w. θ .c from a bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ into a pairwise Urysohn space (Y, σ_1, σ_2) . Then the set $A = \{x \in X: f(x) = g(x)\}$ is an an (i, j)- δ -closed set.

Proof: We will show that $X \land is (i, j) \cdot \delta$ -open. Let $x \in A^c$. Then $f(x) \neq g(x)$. Since Y is a pairwise Urysohn, $\exists \sigma_i$ -open set $W_{f(x)}$ and σ_j -open set $V_{g(x)}$ such that $jCl(W) \cap iCl(V) = \phi$. By $(i, j) \cdot w$. θ .c of f and g, $\exists (i, j)$ -regular open set U_1 and (j, i)-regular open set U_2 of x such that $f(U_1) \subset jCl(W)$ and $g(U_2) \subset iCl(V)$. Clearly $U = U_1 \cap U_2 \subset X \land A$. Thus $X \land A$ is $(i, j) \cdot \delta$ -open and hence A is $(i, j) \cdot \delta$ -closed.

Definition 3.5: Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a bitopological space, then $A \subset X$ is called (i, j)- θ -dense if (i, j)- $Cl\theta(A) = X$.

Corollary : Let f, g be (i, j)-w. θ .c from a bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ into a pairwise Urysohn space (Y, σ_1, σ_2) . If f and g agree on a (i, j)- θ -dense subset of X then f = g every where.

Theorem 3.3: Let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be (i, j)-w. θ .c map and let $A \subset X$. Then $f:A \rightarrow Y$ is (i, j)-w. θ .c.

Proof: Straight forward.

Remark 3.1: If $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)-w. θ .c map. Then $f: X \rightarrow f(X)$ need not be (i, j)-w. θ .c.

Definition 3.6: A function $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- almost strongly- θ -continuous at $x \in X$ if given any σ_i -open set V in Y containing f(x), $\exists a \mathcal{T}_i$ - open set U in X containing x such that $f(jCl(U)) \subset jInt(iCl(V))$ where $i \neq j, i, j = 1, 2$. If this condition is satisfied at each point $x \in X$, then f is said to be (i, j)- almost strongly- θ - continuous (briefly, (i, j)-a.s.c).

Definition 3.7: A function $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)-weak continuous at $x \in X$ if given any σ_i -open set V in Y containing f(x), $\exists a \mathcal{T}_i$ - open set U in X containing x such that $f(U) \subset i Cl(V)$ where $i \neq j$, i, j = 1, 2. If this condition is satisfied at each point $x \in X$, then f is said to be (i, j)-weak continuous (briefly, (i, j)-w.c).

Definition 3.8: A function $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be (i, j)- δ -continuous at $x \in X$ if given

any σ_i -open set *V* in *Y* containing f(x), $\exists a \mathcal{T}_i$ - open set *U* in *X* containing *x* such that $f(i\text{Int}(j\text{Cl}(U))) \subset i\text{Int}(j\text{Cl}(V))$ where $i \neq j$, i, j = 1, 2. If this condition is satisfied at each point $x \in X$, then *f* is said to be (i, j)- δ -continuous (briefly, (i, j)- δ -c).

Example 3.1: Let $X = \Re$ with the usual bitopology, $Y = \Re$ with the countable bitopology and let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be defined as f(rationals) = 1 and f(irrationals) = 0 then f is (i, j)- δ .c, (i, j)-a.s.c but f:

 $(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow f(x)$ is not even (i, j)-w.c.

Definition 3.9: A subset A of a bitopological space X is called pairwise closure compact or pairwise quasi-H-closed if every open cover of A has a finite subcollection whose closures cover A.

Clearly every pairwise compact set is pairwise closure compact but not conversely as it is in the following example.

Example 3.2: Let X be any uncountable bitopological space with the countable bitopology then every subset of X is pairwise closure compact but the only pairwise compact subsets of X are the finite ones.

Definition 3.10: A subset A of a bitopological space X is said to be (i, j)- θ -compact if every cover of (i, j)- θ -open sets has a finite subcover.

Lemma 3.2: A subset A of a bitopological space X is (i, j)- δ -compact iff every cover of (i, j)- δ -open

sets has a finite subcover.

Theorem 3.4: Let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be (i, j)-w. θ .c and K be an (i, j)- δ -compact subset of X.

Then f(K) is a pairwise closure compact subset of Y.

Proof: Let *V* be an open cover of f(K). For each $k \in K$, $f(k) \in v_k$ for some $v_k \in V$. By (i, j)-w. θ .c of f, $f^1(\operatorname{Cl}(v_k))$ is (i, j)-regular open. The collection $\{f^1(\operatorname{Cl}(v_k)): k \in K\}$ is a (i, j)-regular open cover of K and so since K is (i, j)- δ -compact, there is a finite subcollection $\{f^1(\operatorname{Cl}(v_k)): k \in v_0\}$ where v_0 is a finite subset of K and $\{f^1(\operatorname{Cl}(v_k)): k \in v_0\}$ covers K. Clearly, $\{(\operatorname{Cl}(v_k)): k \in v_0\}$ covers f(K) and thus f(K) is a pairwise closure compact subset of Y.

Remark 3.2: It is well known that every closed subset of a pairwise compact space is pairwise compact.

Theorem 3.5: A (i, j)- δ -compact subset of a (i, j)- δ -Hausdorff space is (i, j)- δ -closed.

Proof: Let A be a (i, j)- δ -compact subset of a (i, j)- δ -Hausdorff space X. We will show that X/A is (i, j)- δ -open. Let, $x \in X/A$ then for each $a \in A$, $\exists (i, j)$ - δ -open set $U_{x,a}$ and (j, i)- δ -open set V_a such that $U_{x,a} \cap V_a = \phi$. The collection $\{v_a: a \in A\}$ is a (i, j)- δ -open cover of A. Therefore, \exists a finite subcollection v_1 , v_2, \ldots, v_n that covers A. Let $U = U_1 \cap \ldots \cap U_n$, then $U \cap A = \phi$. Thus X/A is (i, j)- δ -open, proving that A is (i, j)- δ -closed.

Theorem 3.6: Every is (i, j)- δ -closed subset of a (i, j)- δ -compact space is (i, j)- δ -compact.

Proof: Let X be a (i, j)- δ -compact and let A be a (i, j)- δ -closed subset of X. Let C be a (i, j)- δ -open cover of A, then C plus X\A is a (i, j)- δ -open cover of X. Since X is (i, j)- δ -compact, this collection has a finite subcollection that covers X. But then C has a finite subcollection that covers A as we need.

Theorem 3.7: A (i, j)- δ -compact subset of a (i, j)- θ -Hausdorff space is (i, j)- θ -closed.

Proof:Let A be a (i, j)- δ -compact subset of a (i, j)- θ -Hausdorff space X. We will show that X\A is (i, j)- θ -open. Let, $x \in X \setminus A$ then for each $a \in A$, $\exists (i, j)$ - θ -open set $U_{x,a}$ and (j, i)- θ -open set V_a such that $U_{x,a} \cap V_a = \phi$. The collection $\{v_a: a \in A\}$ is a (i, j)- θ -open cover of A. Therefore, $\exists a$ finite subcollection v_1 , v_2 , ..., v_n that covers A. Let $U = U_1 \cap \ldots \cap U_n$, then $U \cap A = \phi$. Thus X\A is (i, j)- θ -open, proving that A is (i, j)- θ -closed.

Definition 3.11: A bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ is said to be pairwise connected (Previn 1967) if it can not be expressed as the union of two non empty disjoint sets U and V such that U is *i*-open and V is *j*-open, where $i \neq j, i, j = 1, 2$.

Theorem 3.8: Let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a surjective (i, j)-w. θ .c and let X be pairwise connected. Then Y is pairwise connected.

Proof: Suppose *Y* is pairwise disconnected. Then $\exists \sigma_i$ -open set *V* and σ_j -open set W such that $Y = V \cup W$. By (i, j)-w. θ .c of $f, f^1(jCl(V)) = f^1(V)$ and $f^1(iCl(W)) = f^1(W)$ are open in *X*. But $X = f^1(V) \cup f^1(W)$ and $f^1(V) \cap f^1(W) = \phi$. Thus *X* is pairwise disconnected, a contradiction. Therefore, *Y* is pairwise connected.

References

- [1]. Srivastava, A. and Gupta, A. (2005) On various properties of δ -compact spaces, Bull.Cal. Math. Soc., 97, (3) 217-222.
- [2]. Herrington, L.L. and Long, P.E. (1975) Characterization of H-closed spaces, Proc.Amer. Soc., 48,469.
- [3]. Park, Jong-Suh. (1988) 'H-closed spaces and W-Lindelof spaces, Journal of the Chungcheong Mathematical Society, 1, June.
- [4]. Joshi, K.D. (1983) 'Introduction to General Topology, Wiley Easter Limited. closed
- [5]. Srivastava, P. and Azad, K.K. (1985) 'Topology, 1' Shrivendra Prakashas, Allahabad.
- [6]. Saleh, M. (2004) 'On θ- closed sets and some forms of continuity' ARCHIVUM MATHEMATICUM (BRNO) Tomus 40, 383-393.
- [7]. Saleh, M. (2003) ' On faint and quasi-θ-continuity' FJMS 11, 177-186.
- [8]. S. Bose and D. Sinha (1982), 'Pairwise almost continuous map and weakly continuous map in bitopological spaces, Bull. Cal. Math. Soc. 74, 195-206.
- [9]. Noiri, T. and Popa, V. (2007) 'On weakly precontinuous functions in bitopological spaces, Soochow Journal of Mathematics, 33 (1), 87-100.
- [10]. Previn, W. J. (1967) 'Connectedness in bitopological spaces, Indag. Math., 29,369-372.
- [11]. Vermeer, J. (1985) 'Closed subspaces of H-closed spaces, Pacific Journal of Mathematics, vol 118, No. 1.
- [12]. Biswas, S.K. and Akther, N. (2015) 'On contra-precontinuous functions in bitopological spaces' Bulletin of Mathematics and Statistics Research, vol. 3. Issue 2, 1-11.