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Abstract: One presents methodology and algorithm to find inter-atomic potentials for different kinds of material systems. One uses ab 

initio potential energy calculations and symbolic regression using genetic programming, which is a generalization of genetic 

algorithms. 
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1. Introduction  

Many research in nuclear sciences and technologies are focused on aging of nuclear reactors and vessels, or on 
biological molecules damages [1]. In both cases, nuclear engineers and scientists are taking benefit from the fast 
evolution of powerful computing facilities to develop simulation tools in order to complete missing informations from 
experimentations. One of the main challenge is then multi-scale simulations with coupling of codes working at different 
scales, microscopic (ab initio), mesoscopic(molecular dynamics), macroscopic (structure calculations with finite 
elements) [1]. Usually, material physicists are using molecular dynamic codes for calculations on alloys in order to 
determine thermo-mechanical constants, such as elastic constants, Young modulus, ... . To achieve that, those codes 
need knowledge of well-suited inter-atomic potentials for each type of material system (molecule, alloy, ...), which 
yields to a long and very difficult development. Moreover, no mathematical shape can be speculated for binary and 
ternary alloys. One presents in the two first sections a systematic procedure using input/output data coming from 
experiments. It uses symbolic regression based on genetic programming [2]. In the last section it is applied to material 
systems with experimental data and/or ab initio calculations for determining an analytical formula for inter-atomic 
potential. One exhibits some examples with numerical applications developed in ruby which is an elegant, powerful 
object oriented programming language [10]. 

2. Symbolic Regression via Genetic Programming (SRvGP) 

2.1. Scheme 

Usually if some input-output data are known, one performs function parameters fitting using optimization methods. 
Because it needs some knowledge of an empirical and parametrized form of the function, and since it is hard for the 
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numerical scheme not to be trapped in a local minimum, it can be rather useful and powerful to perform a symbolic 
regression in order to find a function converging uniformly to the unknown one as shown on figure (1). 

Symbolic regression is a good candidate to achieve such kind of procedures. It has the great advantage to give a 

formal expression of the wanted function which converges uniformly on the adjustment set (figure 1) to the unknown 

one. Uniform convergence means that it is stronger than point-wise convergence and that the speed of convergence is 

not point dependant. 

Symbolic regression can be done in different ways. In this article, we focus on the so-called Symbolic Regression via 

Genetic Programming (GP) [4-6] (SRvGP). GP was initially developed for inductive automatic programming and is 

well-suited for symbolic regression, controller design, and machine learning tasks. One can consider GP algorithms as 

an extension of the well-known genetics algorithms. GP’s scope is to use induction to devise a computer program. This 

isachieved by using evolutionary operators on candidate programs with a tree structure to improve the adaptive fit 

between the population of candidate programs and an objective function. An assessment of a candidate solution 

involves its execution. Symbolic regression with input-output data is achieved just by considering a function as a 

computer program, which is represented with a tree (figure 3) and to use those data in the objective function. 

 

Fig. 1. Symbolic Regression via Genetic Programming permits to build an approximation of an unknown function defined on  , 

and valued on  . 

Let us suppose that some input-output data ( , ) have been measured where  n⊂   and  m⊂   and 

n m ∗, ∈ . Therefore, we would like to find out a symbolic formula which can describe the model by mean ofthe 

symbolic regression using a predefined set of mathematical and logical operators such as for instance {+, −, ∙, /, exp, log, 
sin, cos, neg} where neg: x x− . One can use unary, binary, ..., or any n-ary operator. It can be useful sometimes to 

perform pre-treatments of the data. If the order of magnitude of input-output data are very different, it is necessary to 
normalize them with the maximal values in order to prevent crushing of the largest values on the smallest and to keep 

homogeneous order of magnitudes: 
max
i

ii ,



  for 1 i n≤ ≤ , and 

max
i

ii ,



  for 1 i m≤ ≤ . The symbolic 

regression is then performed on this new data set and the right model is recovered with a re-normalization as a 
post-treatment process. Another pre-treatment which can be done is to remove noise from output data with Fourier or 
wavelets transforms [3]. This signal processing needs that one has to choose the frequencies which have to been kept or 
removed. On the other hand, it can have meaning to find a solution which takes into account the noise, but this is 
another approach which is not discussed in this paper and can be studied in another framework. In a second step, a 
decimation of the output data can be useful to decrease the computational time and to avoid over-fitting phenomena. 
Wavelet analysis seems to be a promising tool [3] to achieve that. Finally, one obtains a new input-output data set 
which can be used for the symbolic regression of the model. 
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3. Mathematical Example of SRvGP 

For example, we propose to illustrate this procedure on data produced with the function: 

2

5( ) sin( )  for [ 3 3]xf x x e x−= ⋅ ∈ − ,          (1) 

This signal is very interesting, not only because it is a wavelet [3], but because it has several local extrema and fast 

oscillations. 

We have added to this function a random uniformly distributed noise 0 25 0 25( ) [ ]xε − . , .∈  for 3 3[ ]x − ,∈  in order 

to see if, in this case, the genetic programming scheme is sensible to small perturbations or could extract the right signal 

we are looking for. In this example, one has allowed only random generation of integer numbers as leafs of the tree. 

 

 
 

Fig. 2. Graphical representation of the function 
2

5( ) sin( ) xf x x e−= ⋅ ⋅ . An uniform random noise [ 0 25 0 25]( )xε − . , .∈  for 

[ 3 3]x ∈ − ,  has been added to the initial output data set f([-3,3]). 
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Fig. 3. Result for the genetic programming of the 
2

5( ) sin( ) xf x x e−= ⋅  noised example with integer random numbers generation. 

This tree corresponds to the approximation of f , 
2

5( ) sin( ) ( )xf x x e f x−= ⋅ =  on [ 3 3]− ,  with function basis set {+, −, ∙, /, 
exp, log, sin, cos, tan, neg}. The letters "l" and "r" correspond respectively to left and right positions of operands in a binary 
expression. 

 

Fig. 4. Result for the genetic programming of the 
2

5( ) sin( ) xf x x e−= ⋅  noised example with real numbers random generation. 
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Fig. 5. Lennard-Jones-like potential example. 

 

 

Fig. 6. SRvGP solution for Lennard-Jones-like potential. The right solution is found in few hundred iterations: 1 6
1 1
2

( )
r r

V r = −  

 



Symbolic Regression of Inter-Atomic Potentials via Genetic Programming 6 

 
Fig. 7. Buckingham-like potential example. 

 

 

Fig. 8. SRvGP solution for Buckingam-like potential. The right solution is found in few hundred iterations: 6
1( ) r
r

V r e−= −  
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Fig. 9. Ar2 molecule potential energy computed with SIESTA. 

 

 

Fig. 10. SRvGP solution for Ar2 molecule potential energy computed with SIESTA. The right solution is found in few thousand 

iterations for a fitness less than 6∙10−4: V(r) = [r∙(1 + e0.171021878791222) + 0.885215174960045]−12 
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Fig. 11. Representation of the SRvGP solution after renormalization V(r) = 1906.22 ∙ [ 5 71

r
. ∙ (1 + e0.171021878791222) + 

0.885215174960045]−12 − 1141.370159 and the potentiel energy computed with SIESTA DFT code. 

The symbolic regression code [7] has been implemented within a ruby script [10] and a MPI library [9] for this 
language which has been developed [8] especially for the scope of this present article. The code is well-suited for 
parallel computing, launching several jobs on different nodes with different random seeds. After convergence of each 
population, a last run is done on a single node involving the best candidates of each previous nodes within a larger 
population. The ruby code is also able to produce automatically the derivatives of the function found with SRvGP. 

The final result obtained in less than 3 minutes for this example with 16 processors and for a fitness function less than 
10−5, is given in a EBNF [11] (Extended Backus-Naur Form) expression (*(*(sin(*x5))1)(exp(*(neg1)(*xx)))) and can 
be represented by the tree shown on figure (3). It represents the function: 

2

5( ) sin( ) xf x x e−= ⋅          (2) 

We have choosen a grow method for the tree development with a maximal depth of 5 and a set of function such as {+, 
−, ∙, /, exp, log, sin, cos, tan, neg} where neg( )x x= − . Figure (2) shows the noised signals for input on [−3, 3]. 

It is interesting that in this example the signal filtering has not been used in this example since the genetic program 

absorbs the noise and finds the right solution. Thus, the symbolic regression finds finally the right function f f=  on 

the input set [−3, 3] even in presence of small noise and without filtering. This means that the model is very robust and 
not sensible to small numerical or experimental noises in general. 

It is interesting to see what happens if one permits to generate not only integer numbers, but real ones, as it is 
exhibited on figure (4). This final result obtained in 5 minutes for this example with 2 processors (2 Ghz, Intel Dual 
Core, 4 Gb RAM) is given in a EBNF [11] expression like ( (sin( (exp 1 60956243194951)))(exp( )))x xx/ / − . ∗  and can 

be represented by the tree shown on figure (4). This expression represents the function: 

21 60956243194951( ) sin( ) xf x e x e. −= ⋅ ⋅         (3) 

Since 1 60956243194951 5 000622636341432e . . , the symbolic regression converges finally to the right function 

f f

  on the input set [−4, 3]. 
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4. Applications for Material Systems 

The main scope of this section is to apply SRvGP to data coming from experiments or ab initio simulations in order 
to find for example inter-atomic potentials, chemical, thermodynamic and mechanical constants which can be used to 
transfer informations from one space-time scale to a higher one. 

We show in this section some simple but relevant examples in order to exhibit the feasibility of the SRvGP scheme. 

4.1. Empirical inter-atomic potentials 

It is interesting to see if SRvGP is efficient for interatomic potentials such as Lennard-Jones, so-called 6-12 potential 
(Figure 5) and Born-Mayer like potentials, 6-exp potential (Figure 7). We use reduced units to perform calculations and 
to show how SRvGP is efficient and converges to the right results. The algorithm uses the input-output data given 
through the analytic form of the potentials. And then, one applies SRvGP to those data for a maximal depth of 6, with 
{+, −, ∙, /, exp, inv, neg, sqr, invpown} with invpown(x) = x−n, n ≥ 1 and sqr(x) = x2. The results are shown on figures 6 
and 8. For those interatomic potentials with a well-defined mathematical shape, a simple personal computer has been 
used and was sufficient for the computations. The right results are found in few hundred iterations on the same personal 
computer as described in the previous section, which means less that 2 mns with two processors and for a fitness 
function value less than 10−5. Of course, in the case of real input-output data, the SRvGP will find some functions 
whose mathematical form is not close to well-know potential, but the SRvGP is sure to find a close function in the sense 
of uniform convergence which can be used to compute forces and other important physical quantities. 

4.2. ab initio inter-atomic potentials 

Let’s now give an example with ab initio data. For example the potential energy of the 2Ar  molecule 
computed with the SIESTA code [12] in the framework of DFT (Kohn-Sham scheme with LDA approximation). 
We have used for SRvGP the same function set and the same parameters as in the previous section excepted the 
maximal depth which has been set to 7, and we have normalized the input-output data. The result of SRvGP for 
normalized data is shown on figure 11. This corresponds after renormalization to the following solution: 

120 1710218787912221906 22 0 885215174960045 1141 370159
5 71

( ) [ (1 ) ]
r

V r e −.. . .
.

= ⋅ ⋅ + + −  

The fitness which is the norm of difference between the two curves is less than 6∙10−4 for few thousand 
iterations, which means less than 5 minutes on the same computer configuration as before. One can remark that 
SRvGP finds a power 12 which describes usually a short range repulsive interaction. 

5. Conclusion 

We have shown in this article that the Symbolic Regression via Genetic Programming (SRvGP ) is a promising 
and efficient way to find a mathematical expression of the potential energy of a material system. This can be used 
of course for other physical quantities. Because ab initio calculations (Hartree-Fock, DFT, ...) are based on first 
principles of quantum physics, it is useful to use the results of those calculations as input-output data of SRvGP 
algorithms. This guarantees that the final function is well-suited for molecular dynamics simulations and is 
integrating informations from the quantum level to the mesoscopic one. Some numerical examples on simple 
computers have been exhibited in order to show the efficiency of SRvGP. Using parallel computers, our scheme is 
able to go further in the modelisation of inter-atomic potentials or other physical quantities with a mix of 
experimental and ab initio data for larger systems such as biological molecules or solids. 
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